Combination of artificial neural networks and fractal theory to predict soil water retention curve

均方误差 Pedotransfer函数 分形 土壤科学 数学 人工神经网络 含水量 土壤水分 保水曲线 几何标准差 决定系数 标准差 几何平均数 粒度分布 土壤级配 分形维数 统计 保水性 岩土工程 粒径 环境科学 工程类 导水率 人工智能 计算机科学 数学分析 化学工程
作者
Hossein Bayat,Mohammad Reza Neyshaburi,Kourosh Mohammadi,N. Nariman-Zadeh,Mahdi Irannejad,Andrew S. Gregory
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:92: 92-103 被引量:35
标识
DOI:10.1016/j.compag.2013.01.005
摘要

Despite good progress in developing pedotransfer functions (PTFs), the input variables that are more preferable in a PTF have not been yet determined clearly. Among the modeling techniques to characterize soil structure, those using fractal theory are in majority. For the first time, fractal parameters were used as predictors to estimate the water content at different matric suctions using artificial neural networks (ANNs). PTFs were developed to estimate soil water retention curve (SWRC) from a dataset of 148 soil samples from North West of Iran. Including geometric mean (dg), geometric standard deviation (sg), and median diameter (Md) of particle size distribution as input parameters significantly enhanced the PTFs’ accuracy and increased the coefficient of determination (R2) by up to 5.5%. Fractal parameters of particle size distribution (PSDFPs) were used as predictors and it improved the accuracy and reliability by decreasing root mean square error (RMSE) by up to 30% for water content at h value of 5 kPa (θ5 kPa) and by up to 12.5% for water content at h value of 50 kPa (θ50 kPa). Entering the fractal parameters of aggregate size distribution (ASDFPs) in the models raised the accuracy at most soil matric suctions (h) and caused up to 6.7% reduction in the RMSE. Their impacts were significant at θ25 kPa and θ50 kPa. The network architectures were unique and problem specific with respect to the output layer transfer functions and number of hidden neurons. Adding PSDFPs and ASDFPs to the input parameters of the proper ANN models could improve the estimation of SWRC, significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
不懂白完成签到 ,获得积分10
1秒前
Smilegate发布了新的文献求助20
1秒前
lpp_发布了新的文献求助10
1秒前
陈最完成签到,获得积分10
1秒前
李健应助年轻时光采纳,获得10
1秒前
1秒前
1秒前
007发布了新的文献求助10
3秒前
yy发布了新的文献求助10
3秒前
云鲲发布了新的文献求助10
4秒前
Rondab应助取昵称好难采纳,获得30
4秒前
勤恳新竹完成签到,获得积分20
5秒前
YanHv1发布了新的文献求助10
6秒前
6秒前
王伟发布了新的文献求助10
7秒前
wang456发布了新的文献求助10
7秒前
8秒前
8秒前
科研通AI5应助ceicic采纳,获得10
8秒前
左右完成签到,获得积分10
9秒前
希望天下0贩的0应助li采纳,获得30
9秒前
何事惊慌发布了新的文献求助10
10秒前
彩虹完成签到 ,获得积分10
10秒前
pluto应助张RH采纳,获得10
11秒前
ranan完成签到,获得积分10
11秒前
12秒前
大帅完成签到,获得积分20
12秒前
lxy完成签到,获得积分10
13秒前
13秒前
13秒前
传奇3应助007采纳,获得10
14秒前
SYLH应助研友_8Y26PL采纳,获得10
14秒前
hover完成签到,获得积分10
14秒前
何事惊慌完成签到,获得积分10
14秒前
科研通AI2S应助YanHv1采纳,获得10
14秒前
ZR666888完成签到,获得积分10
15秒前
小仙女发布了新的文献求助10
16秒前
SciGPT应助奕初阳采纳,获得10
16秒前
li完成签到,获得积分20
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512100
关于积分的说明 11161688
捐赠科研通 3246938
什么是DOI,文献DOI怎么找? 1793609
邀请新用户注册赠送积分活动 874495
科研通“疑难数据库(出版商)”最低求助积分说明 804420