均方误差
Pedotransfer函数
分形
土壤科学
数学
人工神经网络
含水量
土壤水分
保水曲线
几何标准差
决定系数
标准差
几何平均数
粒度分布
土壤级配
分形维数
统计
保水性
岩土工程
粒径
环境科学
工程类
导水率
人工智能
计算机科学
数学分析
化学工程
作者
Hossein Bayat,Mohammad Reza Neyshaburi,Kourosh Mohammadi,N. Nariman-Zadeh,Mahdi Irannejad,Andrew S. Gregory
标识
DOI:10.1016/j.compag.2013.01.005
摘要
Despite good progress in developing pedotransfer functions (PTFs), the input variables that are more preferable in a PTF have not been yet determined clearly. Among the modeling techniques to characterize soil structure, those using fractal theory are in majority. For the first time, fractal parameters were used as predictors to estimate the water content at different matric suctions using artificial neural networks (ANNs). PTFs were developed to estimate soil water retention curve (SWRC) from a dataset of 148 soil samples from North West of Iran. Including geometric mean (dg), geometric standard deviation (sg), and median diameter (Md) of particle size distribution as input parameters significantly enhanced the PTFs’ accuracy and increased the coefficient of determination (R2) by up to 5.5%. Fractal parameters of particle size distribution (PSDFPs) were used as predictors and it improved the accuracy and reliability by decreasing root mean square error (RMSE) by up to 30% for water content at h value of 5 kPa (θ5 kPa) and by up to 12.5% for water content at h value of 50 kPa (θ50 kPa). Entering the fractal parameters of aggregate size distribution (ASDFPs) in the models raised the accuracy at most soil matric suctions (h) and caused up to 6.7% reduction in the RMSE. Their impacts were significant at θ25 kPa and θ50 kPa. The network architectures were unique and problem specific with respect to the output layer transfer functions and number of hidden neurons. Adding PSDFPs and ASDFPs to the input parameters of the proper ANN models could improve the estimation of SWRC, significantly.
科研通智能强力驱动
Strongly Powered by AbleSci AI