Combination of artificial neural networks and fractal theory to predict soil water retention curve

均方误差 Pedotransfer函数 分形 土壤科学 数学 人工神经网络 含水量 土壤水分 保水曲线 几何标准差 决定系数 标准差 几何平均数 粒度分布 土壤级配 分形维数 统计 保水性 岩土工程 粒径 环境科学 工程类 导水率 人工智能 计算机科学 数学分析 化学工程
作者
Hossein Bayat,Mohammad Reza Neyshaburi,Kourosh Mohammadi,N. Nariman-Zadeh,Mahdi Irannejad,Andrew S. Gregory
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:92: 92-103 被引量:35
标识
DOI:10.1016/j.compag.2013.01.005
摘要

Despite good progress in developing pedotransfer functions (PTFs), the input variables that are more preferable in a PTF have not been yet determined clearly. Among the modeling techniques to characterize soil structure, those using fractal theory are in majority. For the first time, fractal parameters were used as predictors to estimate the water content at different matric suctions using artificial neural networks (ANNs). PTFs were developed to estimate soil water retention curve (SWRC) from a dataset of 148 soil samples from North West of Iran. Including geometric mean (dg), geometric standard deviation (sg), and median diameter (Md) of particle size distribution as input parameters significantly enhanced the PTFs’ accuracy and increased the coefficient of determination (R2) by up to 5.5%. Fractal parameters of particle size distribution (PSDFPs) were used as predictors and it improved the accuracy and reliability by decreasing root mean square error (RMSE) by up to 30% for water content at h value of 5 kPa (θ5 kPa) and by up to 12.5% for water content at h value of 50 kPa (θ50 kPa). Entering the fractal parameters of aggregate size distribution (ASDFPs) in the models raised the accuracy at most soil matric suctions (h) and caused up to 6.7% reduction in the RMSE. Their impacts were significant at θ25 kPa and θ50 kPa. The network architectures were unique and problem specific with respect to the output layer transfer functions and number of hidden neurons. Adding PSDFPs and ASDFPs to the input parameters of the proper ANN models could improve the estimation of SWRC, significantly.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
mlml发布了新的文献求助10
刚刚
1秒前
adeno完成签到,获得积分10
1秒前
崩溃发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
365up完成签到,获得积分10
2秒前
香蕉觅云应助舒服的蝴蝶采纳,获得20
2秒前
赘婿应助肖茜玉采纳,获得30
3秒前
3秒前
桑尼号发布了新的文献求助10
3秒前
61发布了新的文献求助10
3秒前
科研通AI2S应助xueshu采纳,获得10
3秒前
桐桐应助细心的听南采纳,获得30
4秒前
Ava应助蔓蔓要努力采纳,获得30
4秒前
4秒前
今后应助热心的天玉采纳,获得10
4秒前
悦子的猫酒馆完成签到,获得积分10
5秒前
发财牛女完成签到,获得积分10
5秒前
5秒前
5秒前
科目三应助自觉从筠采纳,获得10
5秒前
5秒前
6秒前
韩韩发布了新的文献求助10
6秒前
早期早睡完成签到,获得积分10
6秒前
6秒前
嘿嘿发布了新的文献求助10
6秒前
121314wld完成签到,获得积分10
6秒前
6秒前
6秒前
完美世界应助单纯砖头采纳,获得10
6秒前
7秒前
7777135发布了新的文献求助10
7秒前
雪泪发布了新的文献求助10
7秒前
微笑阿狸完成签到,获得积分10
7秒前
7秒前
HIT_C发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624997
求助须知:如何正确求助?哪些是违规求助? 4710900
关于积分的说明 14952616
捐赠科研通 4778944
什么是DOI,文献DOI怎么找? 2553493
邀请新用户注册赠送积分活动 1515444
关于科研通互助平台的介绍 1475731