Combination of artificial neural networks and fractal theory to predict soil water retention curve

均方误差 Pedotransfer函数 分形 土壤科学 数学 人工神经网络 含水量 土壤水分 保水曲线 几何标准差 决定系数 标准差 几何平均数 粒度分布 土壤级配 分形维数 统计 保水性 岩土工程 粒径 环境科学 工程类 导水率 人工智能 计算机科学 数学分析 化学工程
作者
Hossein Bayat,Mohammad Reza Neyshaburi,Kourosh Mohammadi,N. Nariman-Zadeh,Mahdi Irannejad,Andrew S. Gregory
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:92: 92-103 被引量:35
标识
DOI:10.1016/j.compag.2013.01.005
摘要

Despite good progress in developing pedotransfer functions (PTFs), the input variables that are more preferable in a PTF have not been yet determined clearly. Among the modeling techniques to characterize soil structure, those using fractal theory are in majority. For the first time, fractal parameters were used as predictors to estimate the water content at different matric suctions using artificial neural networks (ANNs). PTFs were developed to estimate soil water retention curve (SWRC) from a dataset of 148 soil samples from North West of Iran. Including geometric mean (dg), geometric standard deviation (sg), and median diameter (Md) of particle size distribution as input parameters significantly enhanced the PTFs’ accuracy and increased the coefficient of determination (R2) by up to 5.5%. Fractal parameters of particle size distribution (PSDFPs) were used as predictors and it improved the accuracy and reliability by decreasing root mean square error (RMSE) by up to 30% for water content at h value of 5 kPa (θ5 kPa) and by up to 12.5% for water content at h value of 50 kPa (θ50 kPa). Entering the fractal parameters of aggregate size distribution (ASDFPs) in the models raised the accuracy at most soil matric suctions (h) and caused up to 6.7% reduction in the RMSE. Their impacts were significant at θ25 kPa and θ50 kPa. The network architectures were unique and problem specific with respect to the output layer transfer functions and number of hidden neurons. Adding PSDFPs and ASDFPs to the input parameters of the proper ANN models could improve the estimation of SWRC, significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梁国语发布了新的文献求助50
1秒前
1秒前
1秒前
2秒前
MH完成签到,获得积分20
3秒前
3秒前
3秒前
4秒前
科研通AI6应助WangShixuan采纳,获得10
4秒前
5秒前
parallel完成签到 ,获得积分10
6秒前
飞飞发布了新的文献求助10
6秒前
6秒前
小屁孩完成签到,获得积分10
6秒前
单薄梦易发布了新的文献求助10
7秒前
zhuhaiting发布了新的文献求助10
7秒前
brookqu完成签到,获得积分10
8秒前
8秒前
Jasper应助张凯茜采纳,获得10
8秒前
云魂完成签到,获得积分10
8秒前
9秒前
J11发布了新的文献求助10
9秒前
9秒前
小屁孩发布了新的文献求助10
9秒前
丹dan完成签到,获得积分10
10秒前
科研通AI2S应助xuan采纳,获得10
10秒前
Mr.Left发布了新的文献求助10
10秒前
Owen应助冬瓜熊采纳,获得10
10秒前
11秒前
11秒前
研友_nxbKD8发布了新的文献求助10
11秒前
Maestro_S应助科研通管家采纳,获得30
12秒前
浮游应助科研通管家采纳,获得10
12秒前
ding应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
12秒前
Owen应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
沅沅发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602404
求助须知:如何正确求助?哪些是违规求助? 4011681
关于积分的说明 12419962
捐赠科研通 3691873
什么是DOI,文献DOI怎么找? 2035322
邀请新用户注册赠送积分活动 1068516
科研通“疑难数据库(出版商)”最低求助积分说明 953096