已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Stacked Autoencoders for Unsupervised Feature Learning and Multiple Organ Detection in a Pilot Study Using 4D Patient Data

人工智能 计算机科学 深度学习 医学影像学 机器学习 分类 模式识别(心理学) 分类器(UML) 基本事实 概率逻辑 监督学习 目标检测 特征提取 人工神经网络
作者
Hoo-Chang Shin,Matthew Orton,David J. Collins,Simon Doran,Martin O. Leach
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:35 (8): 1930-1943 被引量:440
标识
DOI:10.1109/tpami.2012.277
摘要

Medical image analysis remains a challenging application area for artificial intelligence. When applying machine learning, obtaining ground-truth labels for supervised learning is more difficult than in many more common applications of machine learning. This is especially so for datasets with abnormalities, as tissue types and the shapes of the organs in these datasets differ widely. However, organ detection in such an abnormal dataset may have many promising potential real-world applications, such as automatic diagnosis, automated radiotherapy planning, and medical image retrieval, where new multimodal medical images provide more information about the imaged tissues for diagnosis. Here, we test the application of deep learning methods to organ identification in magnetic resonance medical images, with visual and temporal hierarchical features learned to categorize object classes from an unlabeled multimodal DCE-MRI dataset so that only a weakly supervised training is required for a classifier. A probabilistic patch-based method was employed for multiple organ detection, with the features learned from the deep learning model. This shows the potential of the deep learning model for application to medical images, despite the difficulty of obtaining libraries of correctly labeled training datasets and despite the intrinsic abnormalities present in patient datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
明明明发布了新的文献求助30
2秒前
2秒前
3秒前
沁钦发布了新的文献求助10
3秒前
4秒前
5秒前
tthhhsss发布了新的文献求助10
5秒前
听话的蜡烛完成签到,获得积分10
5秒前
hui发布了新的文献求助10
5秒前
6秒前
钙钛矿要发光完成签到,获得积分10
6秒前
无名老大应助小丑王采纳,获得30
7秒前
WQ完成签到,获得积分10
7秒前
彩色囧发布了新的文献求助10
7秒前
8秒前
言帅帅发布了新的文献求助20
8秒前
9秒前
qzw发布了新的文献求助10
11秒前
WQ发布了新的文献求助50
11秒前
萌萌雨发布了新的文献求助10
11秒前
12秒前
13秒前
强健的小鸭子完成签到,获得积分20
14秒前
14秒前
coco发布了新的文献求助10
14秒前
PENG应助tthhhsss采纳,获得10
16秒前
彩色囧完成签到,获得积分20
16秒前
Vicky关注了科研通微信公众号
16秒前
16秒前
桔子完成签到,获得积分10
17秒前
17秒前
Kelly完成签到,获得积分10
17秒前
18秒前
Akim应助萌萌雨采纳,获得10
18秒前
19秒前
19秒前
LK完成签到,获得积分10
20秒前
陶醉毛豆发布了新的文献求助10
20秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516074
求助须知:如何正确求助?哪些是违规求助? 3098285
关于积分的说明 9238941
捐赠科研通 2793282
什么是DOI,文献DOI怎么找? 1532950
邀请新用户注册赠送积分活动 712472
科研通“疑难数据库(出版商)”最低求助积分说明 707302