What are 'good' depression symptoms? Comparing the centrality of DSM and non-DSM symptoms of depression in a network analysis

萧条(经济学) 心理学 心情 精神科 抑郁症状 DSM-5 中心性 临床心理学 焦虑 数学 组合数学 宏观经济学 经济
作者
Eiko I. Fried,Sacha Epskamp,Randolph M. Nesse,Francis Tuerlinckx,Denny Borsboom
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:189: 314-320 被引量:602
标识
DOI:10.1016/j.jad.2015.09.005
摘要

The symptoms for Major Depression (MD) defined in the DSM-5 differ markedly from symptoms assessed in common rating scales, and the empirical question about core depression symptoms is unresolved. Here we conceptualize depression as a complex dynamic system of interacting symptoms to examine what symptoms are most central to driving depressive processes. We constructed a network of 28 depression symptoms assessed via the Inventory of Depressive Symptomatology (IDS-30) in 3,463 depressed outpatients from the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study. We estimated the centrality of all IDS-30 symptoms, and compared the centrality of DSM and non-DSM symptoms; centrality reflects the connectedness of each symptom with all other symptoms. A network with 28 intertwined symptoms emerged, and symptoms differed substantially in their centrality values. Both DSM symptoms (e.g., sad mood) and non-DSM symptoms (e.g., anxiety) were among the most central symptoms, and DSM criteria were not more central than non-DSM symptoms. Many subjects enrolled in STAR*D reported comorbid medical and psychiatric conditions which may have affected symptom presentation. The network perspective neither supports the standard psychometric notion that depression symptoms are equivalent indicators of MD, nor the common assumption that DSM symptoms of depression are of higher clinical relevance than non-DSM depression symptoms. The findings suggest the value of research focusing on especially central symptoms to increase the accuracy of predicting outcomes such as the course of illness, probability of relapse, and treatment response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助Yue采纳,获得10
刚刚
zxj完成签到,获得积分10
刚刚
小蔺完成签到,获得积分10
1秒前
levy发布了新的文献求助10
1秒前
2秒前
愉快的真应助LBJ23采纳,获得10
2秒前
han发布了新的文献求助10
3秒前
zry发布了新的文献求助10
3秒前
陈图图完成签到,获得积分10
5秒前
R喻andom完成签到,获得积分10
5秒前
星辰大海应助黄小仙儿采纳,获得10
7秒前
syangZ发布了新的文献求助10
7秒前
ppppppppp发布了新的文献求助10
7秒前
7秒前
pifu驳回了田様应助
8秒前
8秒前
白白白发布了新的文献求助10
9秒前
CodeCraft应助千瓦时醒醒采纳,获得10
9秒前
wwwwppp完成签到,获得积分10
9秒前
10秒前
12秒前
cnx发布了新的文献求助30
13秒前
mxzan发布了新的文献求助20
13秒前
menimeni完成签到,获得积分10
14秒前
没有名字发布了新的文献求助10
14秒前
14秒前
翟翟发布了新的文献求助10
15秒前
欣慰发布了新的文献求助10
15秒前
Wink完成签到,获得积分10
16秒前
16秒前
16秒前
热情映秋发布了新的文献求助10
17秒前
18秒前
Li_KK完成签到,获得积分10
18秒前
Huuu完成签到,获得积分10
18秒前
18秒前
ding应助拉长的元芹采纳,获得10
18秒前
18秒前
善学以致用应助杨宇彤采纳,获得10
19秒前
19秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3101245
求助须知:如何正确求助?哪些是违规求助? 2752689
关于积分的说明 7620005
捐赠科研通 2404773
什么是DOI,文献DOI怎么找? 1275998
科研通“疑难数据库(出版商)”最低求助积分说明 616673
版权声明 599058