What are 'good' depression symptoms? Comparing the centrality of DSM and non-DSM symptoms of depression in a network analysis

萧条(经济学) 心理学 心情 精神科 抑郁症状 DSM-5 中心性 临床心理学 焦虑 数学 组合数学 宏观经济学 经济
作者
Eiko I. Fried,Sacha Epskamp,Randolph M. Nesse,Francis Tuerlinckx,Denny Borsboom
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:189: 314-320 被引量:636
标识
DOI:10.1016/j.jad.2015.09.005
摘要

The symptoms for Major Depression (MD) defined in the DSM-5 differ markedly from symptoms assessed in common rating scales, and the empirical question about core depression symptoms is unresolved. Here we conceptualize depression as a complex dynamic system of interacting symptoms to examine what symptoms are most central to driving depressive processes. We constructed a network of 28 depression symptoms assessed via the Inventory of Depressive Symptomatology (IDS-30) in 3,463 depressed outpatients from the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study. We estimated the centrality of all IDS-30 symptoms, and compared the centrality of DSM and non-DSM symptoms; centrality reflects the connectedness of each symptom with all other symptoms. A network with 28 intertwined symptoms emerged, and symptoms differed substantially in their centrality values. Both DSM symptoms (e.g., sad mood) and non-DSM symptoms (e.g., anxiety) were among the most central symptoms, and DSM criteria were not more central than non-DSM symptoms. Many subjects enrolled in STAR*D reported comorbid medical and psychiatric conditions which may have affected symptom presentation. The network perspective neither supports the standard psychometric notion that depression symptoms are equivalent indicators of MD, nor the common assumption that DSM symptoms of depression are of higher clinical relevance than non-DSM depression symptoms. The findings suggest the value of research focusing on especially central symptoms to increase the accuracy of predicting outcomes such as the course of illness, probability of relapse, and treatment response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
璇22发布了新的文献求助10
刚刚
来杯生椰拿铁完成签到,获得积分10
1秒前
闫先生完成签到,获得积分10
1秒前
1秒前
鱼子西完成签到,获得积分10
1秒前
baisefengche完成签到,获得积分20
1秒前
2秒前
寒冷书竹发布了新的文献求助10
3秒前
令人秃头发布了新的文献求助10
4秒前
iyy完成签到,获得积分20
4秒前
LuciusHe发布了新的文献求助10
4秒前
领导范儿应助NNUsusan采纳,获得10
4秒前
搞怪城完成签到,获得积分10
4秒前
水吉水吉完成签到,获得积分10
4秒前
哆啦完成签到,获得积分10
5秒前
ily.发布了新的文献求助10
5秒前
FashionBoy应助科研扫地僧采纳,获得10
5秒前
admin完成签到,获得积分10
5秒前
zzzy完成签到 ,获得积分10
6秒前
6秒前
顺利紫山发布了新的文献求助10
6秒前
pluto应助宁阿霜采纳,获得10
7秒前
无辜紫菜完成签到,获得积分10
9秒前
zhugongwangdawei完成签到,获得积分10
9秒前
admin发布了新的文献求助10
9秒前
9秒前
leodu发布了新的文献求助10
10秒前
芹菜完成签到,获得积分10
10秒前
SHAO应助璇22采纳,获得10
10秒前
10秒前
DDKK发布了新的文献求助50
11秒前
ily.完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
Ava应助胡导家的菜狗采纳,获得10
13秒前
Hi完成签到 ,获得积分10
14秒前
充电宝应助lilianan采纳,获得10
14秒前
lin发布了新的文献求助20
14秒前
美好斓发布了新的文献求助30
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620