What are 'good' depression symptoms? Comparing the centrality of DSM and non-DSM symptoms of depression in a network analysis

萧条(经济学) 心理学 心情 精神科 抑郁症状 DSM-5 中心性 临床心理学 焦虑 数学 组合数学 宏观经济学 经济
作者
Eiko I. Fried,Sacha Epskamp,Randolph M. Nesse,Francis Tuerlinckx,Denny Borsboom
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:189: 314-320 被引量:636
标识
DOI:10.1016/j.jad.2015.09.005
摘要

The symptoms for Major Depression (MD) defined in the DSM-5 differ markedly from symptoms assessed in common rating scales, and the empirical question about core depression symptoms is unresolved. Here we conceptualize depression as a complex dynamic system of interacting symptoms to examine what symptoms are most central to driving depressive processes. We constructed a network of 28 depression symptoms assessed via the Inventory of Depressive Symptomatology (IDS-30) in 3,463 depressed outpatients from the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study. We estimated the centrality of all IDS-30 symptoms, and compared the centrality of DSM and non-DSM symptoms; centrality reflects the connectedness of each symptom with all other symptoms. A network with 28 intertwined symptoms emerged, and symptoms differed substantially in their centrality values. Both DSM symptoms (e.g., sad mood) and non-DSM symptoms (e.g., anxiety) were among the most central symptoms, and DSM criteria were not more central than non-DSM symptoms. Many subjects enrolled in STAR*D reported comorbid medical and psychiatric conditions which may have affected symptom presentation. The network perspective neither supports the standard psychometric notion that depression symptoms are equivalent indicators of MD, nor the common assumption that DSM symptoms of depression are of higher clinical relevance than non-DSM depression symptoms. The findings suggest the value of research focusing on especially central symptoms to increase the accuracy of predicting outcomes such as the course of illness, probability of relapse, and treatment response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shacodow发布了新的文献求助10
1秒前
3秒前
宇心完成签到,获得积分10
3秒前
代小葵完成签到,获得积分10
6秒前
7秒前
科研通AI5应助妩媚采纳,获得10
8秒前
是容与呀完成签到,获得积分10
8秒前
xiaokang123应助UGO采纳,获得10
11秒前
刻苦的白梅完成签到,获得积分10
11秒前
Wei完成签到,获得积分10
11秒前
12秒前
Mojito发布了新的文献求助10
12秒前
12秒前
西原的橙果完成签到,获得积分10
14秒前
Rookie完成签到 ,获得积分10
15秒前
JamesPei应助大利采纳,获得10
15秒前
王文豪发布了新的文献求助10
16秒前
羞涩的曼凡完成签到,获得积分10
17秒前
FloppyWow发布了新的文献求助10
17秒前
长情半邪完成签到 ,获得积分10
18秒前
领导范儿应助MRM采纳,获得10
18秒前
eli完成签到,获得积分10
18秒前
20秒前
闪闪的妙竹给闪闪的妙竹的求助进行了留言
20秒前
20秒前
陈龙完成签到,获得积分10
20秒前
23秒前
李爱国应助王文豪采纳,获得10
23秒前
Emily完成签到,获得积分20
24秒前
替我活着发布了新的文献求助10
24秒前
24秒前
25秒前
士心发布了新的文献求助30
25秒前
26秒前
28秒前
吃猫的鱼发布了新的文献求助10
28秒前
29秒前
无花果应助hyh采纳,获得10
29秒前
Meng发布了新的文献求助10
30秒前
今天只做一件事应助blenx采纳,获得10
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672461
求助须知:如何正确求助?哪些是违规求助? 3228752
关于积分的说明 9781866
捐赠科研通 2939164
什么是DOI,文献DOI怎么找? 1610648
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174