The scan statistic is commonly used to test if a one dimensional point process is purely random, or if any clusters can be detected. Here it is simultaneously extended in three directions:(i) a spatial scan statistic for the detection of clusters in a multi-dimensional point process is proposed, (ii) the area of the scanning window is allowed to vary, and (iii) the baseline process may be any inhomogeneous Poisson process or Bernoulli process with intensity pro-portional to some known function. The main interest is in detecting clusters not explained by the baseline process. These methods are illustrated on an epidemiological data set, but there are other potential areas of application as well.