Iron regulatory protein-1 (IRP-1) is a bifunctional [4Fe-4S] protein that functions as a cytosolic aconitase or as a trans-regulatory factor controlling iron homeostasis at a post-transcriptional level. Because IRP-1 is a sensitive target protein for nitric oxide (NO), we investigated whether this protein is nitrated in inflammatory macrophages and whether this post-transcriptional modification changes its activities. RAW 264.7 macrophages were first stimulated with interferon-γ and lipopolysaccharide (IFN-γ/LPS) and then triggered by phorbol 12-myristate 13-acetate (PMA) in order to promote co-generation of NO. and O2·¯. IRP-1 was isolated by immunoprecipitation and analyzed for protein-bound nitrotyrosine by Western blotting. We show that nitration of endogenous IRP-1 in NO-producing macrophages boosted to produce O2·¯ was accompanied by aconitase inhibition and impairment of its capacity to bind the iron-responsive element (IRE) of ferritin mRNA. Lost IRE-binding activity was not recovered by exposure of IRP-1 to 2% 2-mercaptoethanol and was not due to protein degradation. Inclusion of cis-aconitate with cell extract to stabilize the [4Fe-4S] cluster of holo-IRP-1 rendered protein insensitive to nitration by peroxynitrite, suggesting that loss of [Fe-S] cluster and subsequent change of conformation are prerequisites for tyrosine nitration. IRP-1 nitration was strongly reduced when IFN-γ/LPS/PMA-stimulated cells were incubated with myeloperoxidase inhibitors, which points to the contribution of the nitrite/H2O2/peroxidase pathway to IRP-1 nitration in vivo. Interestingly, under these conditions, IRP-1 recovered full IRE binding as assessed by treatment with 2% 2-mercaptoethanol. Peroxidase-mediated nitration of critical tyrosine residues, by holding IRP-1 in an inactive state, may constitute, in activated macrophages, a self-protecting mechanism against iron-induced toxicity.