混合功能
福克空间
布里渊区
密度泛函理论
互易晶格
格子(音乐)
模数
统计物理学
航程(航空)
数学
物理
量子力学
材料科学
声学
复合材料
衍射
作者
Joachim Paier,Martijn Marsman,Kerstin Hummer,Georg Kresse,Iann C. Gerber,János G. Ángyán
摘要
Hybrid Fock exchange/density functional theory functionals have shown to be very successful in describing a wide range of molecular properties. For periodic systems, however, the long-range nature of the Fock exchange interaction and the resultant large computational requirements present a major drawback. This is especially true for metallic systems, which require a dense Brillouin zone sampling. Recently, a new hybrid functional [HSE03, J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003)] that addresses this problem within the context of methods that evaluate the Fock exchange in real space was introduced. We discuss the advantages the HSE03 functional brings to methods that rely on a reciprocal space description of the Fock exchange interaction, e.g., all methods that use plane wave basis sets. Furthermore, we present a detailed comparison of the performance of the HSE03 and PBE0 functionals for a set of archetypical solid state systems by calculating lattice parameters, bulk moduli, heats of formation, and band gaps. The results indicate that the hybrid functionals indeed often improve the description of these properties, but in several cases the results are not yet on par with standard gradient corrected functionals. This concerns in particular metallic systems for which the bandwidth and exchange splitting are seriously overestimated.
科研通智能强力驱动
Strongly Powered by AbleSci AI