The role of causality in discourse processing: Effects of expectation and coherence relations

因果关系(物理学) 连贯性(哲学赌博策略) 理解力 心理学 认知心理学 背景(考古学) 因果模型 句子处理 关系(数据库) 计算机科学 口译(哲学) 心理语言学 语言学 自然语言处理 认知 数学 哲学 古生物学 神经科学 物理 程序设计语言 统计 生物 数据库 量子力学
作者
Willem M. Mak,Ted Sanders
出处
期刊:Language and Cognitive Processes [Informa]
卷期号:28 (9): 1414-1437 被引量:30
标识
DOI:10.1080/01690965.2012.708423
摘要

Research on the processing of causality has shown that causally related sentences lead to faster reading, better recall, and better comprehension than sentences that are not causally related. In this study, we investigate two ways in which causality can influence processing: through the expectation that readers may have of a causal relation and the ease with which the sentences can be related in a causal way on the basis of their content. We ran two eye tracking experiments to investigate the online effects of these factors. In the experiments we looked at the influence of these factors on the process of establishing referential and relational coherence. Experiment 1 shows that immediate effects of causal relatedness on referential processing occur even with a connective that is not explicitly causal (when). Moreover, the results show that the early effect only occurs when readers expect a causal relation. Experiment 1 also shows that causal expectations facilitate the processing of causally related sentences. Experiment 2 shows that this is only the case when the content of the second clause actually allows a causal interpretation. The data show that causal expectations have differential effects on the processing of referential and relational coherence. Referential coherence is influenced proactively by the focusing of one of the referents in the context. Relational coherence, on the other hand, is influenced retroactively: only when there turns out to be a causal link between the sentences is processing facilitated by causal expectation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OngJi发布了新的文献求助10
刚刚
1秒前
科研通AI6应助NGU采纳,获得10
1秒前
2秒前
2秒前
在水一方应助小张采纳,获得10
2秒前
烂漫香岚发布了新的文献求助10
3秒前
3秒前
zhenghua发布了新的文献求助30
3秒前
李小明完成签到,获得积分10
4秒前
浮游应助JIA采纳,获得10
5秒前
浮游应助majf采纳,获得10
5秒前
5秒前
坏线虫发布了新的文献求助30
6秒前
小新应助独特的姝采纳,获得10
6秒前
7秒前
camilia发布了新的文献求助10
7秒前
李jl发布了新的文献求助30
7秒前
上官若男应助棒棒哒采纳,获得10
8秒前
1526应助北北北采纳,获得10
9秒前
小钵子甜酒完成签到,获得积分10
10秒前
10秒前
jojo完成签到,获得积分20
11秒前
Ra321完成签到,获得积分10
11秒前
11秒前
11秒前
zxx完成签到 ,获得积分0
12秒前
酷酷完成签到,获得积分10
12秒前
小李发布了新的文献求助10
12秒前
科研通AI6应助李jl采纳,获得10
12秒前
12秒前
JIinghong完成签到,获得积分10
13秒前
zas完成签到 ,获得积分10
14秒前
koi完成签到,获得积分10
14秒前
14秒前
JINCHANG完成签到,获得积分10
14秒前
明天儿发布了新的文献求助10
14秒前
14秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460985
求助须知:如何正确求助?哪些是违规求助? 4566080
关于积分的说明 14303083
捐赠科研通 4491670
什么是DOI,文献DOI怎么找? 2460439
邀请新用户注册赠送积分活动 1449757
关于科研通互助平台的介绍 1425537