Inspection Text Classification of Power Equipment Based on TextCNN

计算机科学 人工智能 文字2vec 混淆矩阵 可靠性(半导体) 翻译(生物学) 卷积神经网络 特征提取 模式识别(心理学) 数据挖掘 功率(物理) 机器学习 嵌入 生物化学 物理 化学 量子力学 信使核糖核酸 基因
作者
Jian-ning Chen,Yuanxiang Zhou,Jiamin Ge
出处
期刊:Lecture notes in electrical engineering 卷期号:: 390-398
标识
DOI:10.1007/978-981-19-1870-4_41
摘要

AbstractA large number of text and reports about the power equipment are generated in power system, which consist of implicit information of operation condition and insulation status. With the development of convolutional neural network (CNN), the inspection text can be analyzed intelligently to improve the reliability of power system. In order to extract valuable information from inspection text for state evaluation of power equipment in local area, an information extraction model for inspection text based on TextCNN is proposed, improved and verified. First, the feature embedding of inspection text were performed by Word2Vec method. Secondly, the corpus were augmented with back translation method. Then, the TextCNN was adopted to classify the risk level of the power equipment or area involved in the inspection text. Finally, the classification results from the model were evaluated by classification accuracy, F1 score, confusion matrix and compared with the model based on BiLSTM and RCNN. The results demonstrated that the performance of TextCNN was the best among the three models on augmented dataset by back translation method with ACC and F1 scores of 0.9087 and 0.9099, respectively, which is the most suitable model among these three for recognition and classification of inspection text of power equipment.KeywordsInspection textInformation extractionBack translationTextCNN
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hayat发布了新的文献求助20
1秒前
在水一方应助雪妮儿采纳,获得10
1秒前
2秒前
刻苦的皮卡丘完成签到,获得积分10
4秒前
JamesPei应助gc采纳,获得10
5秒前
小松鼠发布了新的文献求助10
7秒前
小蘑菇应助juiceeeee采纳,获得10
7秒前
潇洒的竹杖完成签到,获得积分10
7秒前
渔舟唱晚完成签到,获得积分10
8秒前
8秒前
昨夜書完成签到 ,获得积分10
8秒前
yin应助秋雨沉梦采纳,获得10
8秒前
xzk0010发布了新的文献求助10
9秒前
乐乘完成签到,获得积分10
9秒前
10秒前
蚂蚱完成签到 ,获得积分0
10秒前
xpd完成签到,获得积分10
10秒前
11秒前
安娜尹完成签到,获得积分10
13秒前
古月完成签到 ,获得积分10
14秒前
秀丽烨霖应助Linyi采纳,获得10
15秒前
Emily0022关注了科研通微信公众号
15秒前
15秒前
竹筏过海应助Cris采纳,获得50
16秒前
F_A发布了新的文献求助10
16秒前
semigreen完成签到 ,获得积分10
17秒前
18秒前
PQ完成签到,获得积分10
19秒前
炙热的萤完成签到,获得积分20
19秒前
谦让的小姜应助DFQZH采纳,获得10
19秒前
20秒前
yzpcq完成签到,获得积分10
21秒前
21秒前
21秒前
22秒前
sunyang发布了新的文献求助10
24秒前
YuanbinMao应助小混金采纳,获得30
24秒前
嘿嘿完成签到 ,获得积分10
25秒前
25秒前
xzk0010完成签到,获得积分20
25秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3231478
求助须知:如何正确求助?哪些是违规求助? 2878539
关于积分的说明 8206665
捐赠科研通 2546026
什么是DOI,文献DOI怎么找? 1375617
科研通“疑难数据库(出版商)”最低求助积分说明 647437
邀请新用户注册赠送积分活动 622542