Inspection Text Classification of Power Equipment Based on TextCNN

计算机科学 人工智能 文字2vec 混淆矩阵 可靠性(半导体) 翻译(生物学) 卷积神经网络 特征提取 模式识别(心理学) 数据挖掘 功率(物理) 机器学习 嵌入 物理 信使核糖核酸 基因 量子力学 生物化学 化学
作者
Jian-ning Chen,Yuanxiang Zhou,Jiamin Ge
出处
期刊:Lecture notes in electrical engineering 卷期号:: 390-398
标识
DOI:10.1007/978-981-19-1870-4_41
摘要

AbstractA large number of text and reports about the power equipment are generated in power system, which consist of implicit information of operation condition and insulation status. With the development of convolutional neural network (CNN), the inspection text can be analyzed intelligently to improve the reliability of power system. In order to extract valuable information from inspection text for state evaluation of power equipment in local area, an information extraction model for inspection text based on TextCNN is proposed, improved and verified. First, the feature embedding of inspection text were performed by Word2Vec method. Secondly, the corpus were augmented with back translation method. Then, the TextCNN was adopted to classify the risk level of the power equipment or area involved in the inspection text. Finally, the classification results from the model were evaluated by classification accuracy, F1 score, confusion matrix and compared with the model based on BiLSTM and RCNN. The results demonstrated that the performance of TextCNN was the best among the three models on augmented dataset by back translation method with ACC and F1 scores of 0.9087 and 0.9099, respectively, which is the most suitable model among these three for recognition and classification of inspection text of power equipment.KeywordsInspection textInformation extractionBack translationTextCNN

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zycdx3906完成签到,获得积分10
1秒前
Marcus完成签到,获得积分10
3秒前
闵松岳发布了新的文献求助10
3秒前
6秒前
shhoing应助卡卡采纳,获得10
6秒前
李嘉衡完成签到 ,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
852应助yydd采纳,获得10
8秒前
科研通AI2S应助ikuaikuai采纳,获得10
9秒前
zzyytt完成签到,获得积分10
9秒前
12秒前
若水完成签到 ,获得积分10
12秒前
13秒前
顺利完成签到,获得积分10
14秒前
彭于晏应助a.........采纳,获得10
16秒前
大模型应助黎敏采纳,获得10
16秒前
Kannan发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
南桥枝完成签到 ,获得积分10
19秒前
哈哈完成签到,获得积分20
19秒前
可爱的妙海完成签到,获得积分20
20秒前
oaim完成签到,获得积分10
20秒前
qianqiu完成签到 ,获得积分10
20秒前
哈哈发布了新的文献求助30
22秒前
22秒前
啦啦啦啦关注了科研通微信公众号
22秒前
迅速的仰发布了新的文献求助10
22秒前
赘婿应助稳重的十月采纳,获得20
23秒前
Owen应助HAHA采纳,获得10
23秒前
25秒前
李欣宇完成签到,获得积分10
25秒前
25秒前
26秒前
26秒前
秀丽的犀牛完成签到 ,获得积分10
27秒前
万能图书馆应助guyan采纳,获得10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537102
求助须知:如何正确求助?哪些是违规求助? 4624693
关于积分的说明 14592890
捐赠科研通 4565218
什么是DOI,文献DOI怎么找? 2502220
邀请新用户注册赠送积分活动 1480944
关于科研通互助平台的介绍 1452123