Inspection Text Classification of Power Equipment Based on TextCNN

计算机科学 人工智能 文字2vec 混淆矩阵 可靠性(半导体) 翻译(生物学) 卷积神经网络 特征提取 模式识别(心理学) 数据挖掘 功率(物理) 机器学习 嵌入 生物化学 物理 化学 量子力学 信使核糖核酸 基因
作者
Jian-ning Chen,Yuanxiang Zhou,Jiamin Ge
出处
期刊:Lecture notes in electrical engineering 卷期号:: 390-398
标识
DOI:10.1007/978-981-19-1870-4_41
摘要

AbstractA large number of text and reports about the power equipment are generated in power system, which consist of implicit information of operation condition and insulation status. With the development of convolutional neural network (CNN), the inspection text can be analyzed intelligently to improve the reliability of power system. In order to extract valuable information from inspection text for state evaluation of power equipment in local area, an information extraction model for inspection text based on TextCNN is proposed, improved and verified. First, the feature embedding of inspection text were performed by Word2Vec method. Secondly, the corpus were augmented with back translation method. Then, the TextCNN was adopted to classify the risk level of the power equipment or area involved in the inspection text. Finally, the classification results from the model were evaluated by classification accuracy, F1 score, confusion matrix and compared with the model based on BiLSTM and RCNN. The results demonstrated that the performance of TextCNN was the best among the three models on augmented dataset by back translation method with ACC and F1 scores of 0.9087 and 0.9099, respectively, which is the most suitable model among these three for recognition and classification of inspection text of power equipment.KeywordsInspection textInformation extractionBack translationTextCNN
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoziyi666完成签到,获得积分10
刚刚
1秒前
wjz完成签到,获得积分10
1秒前
坚定的琦完成签到,获得积分10
2秒前
2秒前
2秒前
司空豁应助彭Prrrr采纳,获得10
2秒前
2秒前
桐桐应助害羞的花生采纳,获得10
3秒前
3秒前
原始人完成签到,获得积分10
3秒前
克己复礼完成签到,获得积分20
4秒前
寒冷听枫完成签到,获得积分20
4秒前
4秒前
5秒前
lukawa发布了新的文献求助10
5秒前
韩涵完成签到 ,获得积分10
6秒前
鸭子兔完成签到,获得积分10
7秒前
7秒前
FashionBoy应助烂漫猫咪采纳,获得10
7秒前
默默南晴发布了新的文献求助10
7秒前
猴子大王666完成签到,获得积分10
7秒前
ardejiang发布了新的文献求助10
7秒前
跳不起来的大神完成签到 ,获得积分10
7秒前
8秒前
情怀应助木木采纳,获得10
8秒前
领导范儿应助lailai采纳,获得10
8秒前
kun完成签到,获得积分10
8秒前
迷糊发布了新的文献求助10
8秒前
8秒前
大成子发布了新的文献求助10
9秒前
专注可兰完成签到,获得积分10
9秒前
思源应助hooke采纳,获得10
9秒前
善学以致用应助挺喜欢你采纳,获得10
10秒前
kingwill应助感动书文采纳,获得20
10秒前
体贴的夜安应助kento采纳,获得50
10秒前
ZHANES发布了新的文献求助30
10秒前
zz发布了新的文献求助10
11秒前
123456789完成签到,获得积分10
11秒前
2464259931发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559435
求助须知:如何正确求助?哪些是违规求助? 3985900
关于积分的说明 12340835
捐赠科研通 3656514
什么是DOI,文献DOI怎么找? 2014495
邀请新用户注册赠送积分活动 1049235
科研通“疑难数据库(出版商)”最低求助积分说明 937558