A Model Incorporating Axillary Tail Position on Mammography for Preoperative Prediction of Non-sentinel Lymph Node Metastasis in Patients with Initial cN+ Breast Cancer after Neoadjuvant Chemotherapy

医学 乳腺癌 前哨淋巴结 腋窝淋巴结清扫术 置信区间 肿瘤科 内科学 优势比 单变量分析 转移 放射科 淋巴结 癌症 多元分析
作者
Teng Zhu,Xiaocheng Lin,Tingfeng Zhang,Weiping Li,Hongfei Gao,Ciqiu Yang,Fei Ji,Yi Zhang,Junsheng Zhang,Weijun Pan,Xiaosheng Zhuang,Bo Shen,Yuanqi Chen,Kun Wang
出处
期刊:Academic Radiology [Elsevier]
卷期号:29 (12): e271-e278 被引量:2
标识
DOI:10.1016/j.acra.2022.03.012
摘要

Rationale and Objectives This study aimed to develop a model incorporating axillary tail position on mammography (AT) for the prediction of non-sentinel Lymph Node (NSLN) metastasis in patients with initial clinical node positivity (cN+). Methods and Materials The study reviewed a total of 257 patients with cN+ breast cancer who underwent both sentinel lymph node biopsy (SLNB) and axillary lymph node dissection (ALND) following neoadjuvant chemotherapy (NAC). A logistic regression model was developed based on these factors and the results of post-NAC AT and axillary ultrasound (AUS). Results Four clinical factors with p<0.1 in the univariate analysis, including ycT0(odds ratio [OR]: 4.84, 95% confidence interval [CI]: 2.13-11.91, p<0.001), clinical stage before NAC (OR: 2.68, 95%CI: 1.15-6.58, p=0.025), estrogen receptor (ER) expression (OR: 3.29, 95%CI: 1.39-8.39, p=0.009), and HER2 status (OR: 0.21, 95%CI: 0.08-0.50, p=0.001), were independent predictors of NSLN metastases. The clinical model based on the above four factors resulted in the area under the curve (AUC) of 0.82(95%CI: 0.76‐0.88) in the training set and 0.83(95% CI: 0.74‐0.92) in the validation set. The results of post-NAC AUS and AT were added to the clinical model to construct a clinical imaging model for the prediction of NSLN metastasis with AUC of 0.87(95%CI: 0.81‐0.93) in the training set and 0.89(95%CI: 0.82‐0.96) in the validation set. Conclusions The study incorporated the results of post-NAC AT and AUS with other clinal factors to develop a model to predict NSLN metastasis in patients with initial cN+ before surgery. This model performed excellently, allowing physicians to select patients for whom unnecessary ALND could be avoided after NAC. This study aimed to develop a model incorporating axillary tail position on mammography (AT) for the prediction of non-sentinel Lymph Node (NSLN) metastasis in patients with initial clinical node positivity (cN+). The study reviewed a total of 257 patients with cN+ breast cancer who underwent both sentinel lymph node biopsy (SLNB) and axillary lymph node dissection (ALND) following neoadjuvant chemotherapy (NAC). A logistic regression model was developed based on these factors and the results of post-NAC AT and axillary ultrasound (AUS). Four clinical factors with p<0.1 in the univariate analysis, including ycT0(odds ratio [OR]: 4.84, 95% confidence interval [CI]: 2.13-11.91, p<0.001), clinical stage before NAC (OR: 2.68, 95%CI: 1.15-6.58, p=0.025), estrogen receptor (ER) expression (OR: 3.29, 95%CI: 1.39-8.39, p=0.009), and HER2 status (OR: 0.21, 95%CI: 0.08-0.50, p=0.001), were independent predictors of NSLN metastases. The clinical model based on the above four factors resulted in the area under the curve (AUC) of 0.82(95%CI: 0.76‐0.88) in the training set and 0.83(95% CI: 0.74‐0.92) in the validation set. The results of post-NAC AUS and AT were added to the clinical model to construct a clinical imaging model for the prediction of NSLN metastasis with AUC of 0.87(95%CI: 0.81‐0.93) in the training set and 0.89(95%CI: 0.82‐0.96) in the validation set. The study incorporated the results of post-NAC AT and AUS with other clinal factors to develop a model to predict NSLN metastasis in patients with initial cN+ before surgery. This model performed excellently, allowing physicians to select patients for whom unnecessary ALND could be avoided after NAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘维尼发布了新的文献求助10
1秒前
2秒前
不安海燕发布了新的文献求助10
3秒前
王小静完成签到,获得积分10
5秒前
aaa发布了新的文献求助10
6秒前
yu_z完成签到 ,获得积分10
7秒前
7秒前
7秒前
小蘑菇应助等乙天采纳,获得10
10秒前
10秒前
10秒前
图喵喵发布了新的文献求助10
12秒前
zqq发布了新的文献求助10
13秒前
追寻面包发布了新的文献求助10
13秒前
SciGPT应助li采纳,获得10
13秒前
sys549发布了新的文献求助10
14秒前
CodeCraft应助HWS采纳,获得30
15秒前
16秒前
16秒前
16秒前
糟糕的铃铛完成签到,获得积分10
17秒前
yyymmma应助清新的青寒采纳,获得10
17秒前
Jalynn2044关注了科研通微信公众号
18秒前
李爱国应助胖成球采纳,获得10
19秒前
陈宝妮完成签到,获得积分10
19秒前
Henry应助安详初蓝采纳,获得200
20秒前
琳琳发布了新的文献求助10
20秒前
moom完成签到 ,获得积分10
21秒前
泡面小猪发布了新的文献求助10
21秒前
22秒前
24秒前
可爱的函函应助aaa采纳,获得10
25秒前
克丽发布了新的文献求助10
26秒前
香蕉觅云应助图喵喵采纳,获得10
27秒前
小蘑菇应助智慧无穷采纳,获得10
28秒前
29秒前
打打应助琳琳采纳,获得10
29秒前
zho发布了新的文献求助10
30秒前
飞快的紫文完成签到,获得积分20
30秒前
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136607
求助须知:如何正确求助?哪些是违规求助? 2787645
关于积分的说明 7782462
捐赠科研通 2443707
什么是DOI,文献DOI怎么找? 1299370
科研通“疑难数据库(出版商)”最低求助积分说明 625429
版权声明 600954