Stock return prediction: Stacking a variety of models

可预测性 计量经济学 水准点(测量) 股票市场 库存(枪支) 堆积 计算机科学 绝对收益 超额收益 下行风险 回归 经济 金融经济学 统计 数学 投资业绩 文件夹 投资回报率 工程类 微观经济学 机械工程 背景(考古学) 生物 古生物学 大地测量学 物理 核磁共振 生产(经济) 地理
作者
Albert Bo Zhao,Tingting Cheng
出处
期刊:Journal of Empirical Finance [Elsevier]
卷期号:67: 288-317 被引量:17
标识
DOI:10.1016/j.jempfin.2022.04.001
摘要

We employ an ensemble learning approach, "stacking", to refine and combine a variety of linear and nonlinear individual stock return prediction models. In an application of forecasting U.S. market excess return, stacking with a simple structure can outperform the traditional historical mean benchmark, Mallows model averaging, simple combination forecast, complete subset regression, combination elastic net forecast, and several other models in terms of both in- and out-of-sample performance measures on a consistent basis. More importantly, we find that the out-of-sample gains of stacking are especially evident during extreme downside market movements. Overall, stacking can generate substantive improvements in market excess return predictability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻代芙完成签到,获得积分20
1秒前
2秒前
zdz发布了新的文献求助60
2秒前
2秒前
3秒前
3秒前
儒雅的蓝天完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
张馨月完成签到,获得积分10
4秒前
pth发布了新的文献求助10
4秒前
田様应助laifeihong采纳,获得10
5秒前
xm发布了新的文献求助10
6秒前
薛建伟完成签到 ,获得积分10
6秒前
Awake完成签到,获得积分10
6秒前
现代书雪发布了新的文献求助10
7秒前
8秒前
pb发布了新的文献求助10
8秒前
开心的耳机完成签到 ,获得积分20
9秒前
9秒前
9秒前
xy完成签到 ,获得积分10
10秒前
10秒前
11秒前
ballonfish发布了新的文献求助10
11秒前
虚幻代芙发布了新的文献求助10
12秒前
仲谋发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
14秒前
大大大同完成签到,获得积分20
15秒前
16秒前
16秒前
17秒前
黑色经典发布了新的文献求助10
17秒前
17秒前
imp发布了新的文献求助10
18秒前
19秒前
汉堡包应助聪慧凡雁采纳,获得10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642582
求助须知:如何正确求助?哪些是违规求助? 4759250
关于积分的说明 15018176
捐赠科研通 4801148
什么是DOI,文献DOI怎么找? 2566437
邀请新用户注册赠送积分活动 1524505
关于科研通互助平台的介绍 1484039