可预测性
计量经济学
水准点(测量)
股票市场
库存(枪支)
堆积
计算机科学
绝对收益
超额收益
下行风险
回归
经济
金融经济学
统计
数学
投资业绩
文件夹
投资回报率
工程类
微观经济学
机械工程
背景(考古学)
马
生物
古生物学
大地测量学
物理
核磁共振
生产(经济)
地理
作者
Albert Bo Zhao,Tingting Cheng
标识
DOI:10.1016/j.jempfin.2022.04.001
摘要
We employ an ensemble learning approach, "stacking", to refine and combine a variety of linear and nonlinear individual stock return prediction models. In an application of forecasting U.S. market excess return, stacking with a simple structure can outperform the traditional historical mean benchmark, Mallows model averaging, simple combination forecast, complete subset regression, combination elastic net forecast, and several other models in terms of both in- and out-of-sample performance measures on a consistent basis. More importantly, we find that the out-of-sample gains of stacking are especially evident during extreme downside market movements. Overall, stacking can generate substantive improvements in market excess return predictability.
科研通智能强力驱动
Strongly Powered by AbleSci AI