Identification of construction and demolition waste based on change detection and deep learning

拆毁 变更检测 拆迁垃圾 样品(材料) 鉴定(生物学) 环境科学 计算机科学 交叉口(航空) 深度学习 判别式 北京 人工智能 土木工程 地图学 地理 工程类 生物 考古 化学 中国 植物 色谱法
作者
Xue Zhao,Yang Yang,Fuzhou Duan,Miao Zhang,Jiang Guo-fu,Xing Yan,Shisong Cao,Wenji Zhao
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:43 (6): 2012-2028 被引量:3
标识
DOI:10.1080/01431161.2022.2054296
摘要

With the gradual adjustment of urban expansion and discontinuation of non-essential functions in Beijing, many decades-old buildings have been demolished. Thus, construction and demolition waste (CDW) has become the focus of urban and dust pollution management. However, CDW piles are volatile and present irregular boundaries. Therefore, it is essential to map CDW regions in a timely and accurate manner to achieve urban development while protecting the environment. To address this issue, we proposed a method of CDW identification based on change detection and deep learning. First, ZY-3 multispectral images from 2016 and 2019 and their difference images were used for initial sample preparation. We expanded the samples using the post-classification comparison method of change detection, resulting in a 25.4% increase in the valid sample set. The expanded samples were then used as an input to the DeepLabV3+ for training. Thereafter, combined with the change information from the digital elevation model, specific forms, such as demolition remains, landfill CDW, and large-scale dump, were extracted using spatial analysis methods. The overall accuracy of CDW recognition was 91.67%, with a Kappa coefficient of 0.8642. In addition, we calculated the accuracy indices using only the initial samples, obtaining a mean Intersection-over-Union value that was 0.086 lower than that obtained using the expanded sample set. Similar results were obtained in PSPNet and UNet. This suggests that change detection is useful in improving the accuracy of the deep learning models. This study is the first to identify three existing forms of CDW and can effectively address the misclassification between CDW and bare land to identify CDW efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
raycee发布了新的文献求助10
刚刚
1秒前
2秒前
3秒前
心灵美芯完成签到,获得积分10
3秒前
搞搞科研完成签到,获得积分10
5秒前
6秒前
6秒前
krk发布了新的文献求助10
8秒前
NexusExplorer应助海晨采纳,获得10
8秒前
背后中心发布了新的文献求助10
8秒前
没什么是看文献解决不了的完成签到,获得积分10
8秒前
8秒前
秋千发布了新的文献求助10
8秒前
调研昵称发布了新的文献求助10
10秒前
10秒前
轩辕盼波发布了新的文献求助50
11秒前
wuxueyi发布了新的文献求助10
11秒前
完美世界应助哈哈哈哈采纳,获得10
12秒前
科研通AI5应助优秀少年采纳,获得10
12秒前
舒窈完成签到 ,获得积分10
13秒前
13秒前
AprilLeung完成签到 ,获得积分10
13秒前
科目三应助lance采纳,获得10
14秒前
Eden发布了新的文献求助30
15秒前
16秒前
Tatw完成签到 ,获得积分10
16秒前
Zhang发布了新的文献求助10
16秒前
17秒前
17秒前
Orange应助krk采纳,获得10
17秒前
17秒前
17秒前
大利完成签到,获得积分10
22秒前
聪慧寄凡发布了新的文献求助10
23秒前
辉hui发布了新的文献求助10
23秒前
kyou发布了新的文献求助10
24秒前
25秒前
wj发布了新的文献求助10
25秒前
25秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484036
求助须知:如何正确求助?哪些是违规求助? 3073149
关于积分的说明 9129737
捐赠科研通 2764836
什么是DOI,文献DOI怎么找? 1517444
邀请新用户注册赠送积分活动 702119
科研通“疑难数据库(出版商)”最低求助积分说明 701009