基质(化学分析)
集合(抽象数据类型)
数学
理论(学习稳定性)
人工神经网络
保守主义
应用数学
控制理论(社会学)
计算机科学
数学优化
人工智能
政治
机器学习
复合材料
政治学
材料科学
程序设计语言
法学
控制(管理)
作者
Yufeng Tian,Zhanshan Wang
标识
DOI:10.1016/j.neucom.2022.04.036
摘要
This paper revisits the problem of stability analysis for delayed neural networks (DNNs). By introducing a set of auxiliary vectors and slack matrices, an auxiliary matrix-based integral inequality (AMBII) is presented. The auxiliary matrix is composed of auxiliary vectors, slack matrix and time-varying delay. It can make a trade off between conservatism and complexity. By using AMBII, a less conservative stability criterion is obtained for DNNs in terms of linear matrix inequalities (LMIs). The effectiveness of the stability condition can be demonstrated by illustrating a numerical example.
科研通智能强力驱动
Strongly Powered by AbleSci AI