Development and External Validation of a Machine Learning Model for Prediction of Potential Transfer to the PICU

医学 机器学习 人工智能 模型验证 数据科学 计算机科学
作者
Anoop Mayampurath,L. Nelson Sanchez‐Pinto,Emma Hegermiller,Amarachi Erondu,Kyle A. Carey,Priti Jani,Robert D. Gibbons,Dana P. Edelson,Matthew M. Churpek
出处
期刊:Pediatric Critical Care Medicine [Lippincott Williams & Wilkins]
卷期号:23 (7): 514-523 被引量:9
标识
DOI:10.1097/pcc.0000000000002965
摘要

Unrecognized clinical deterioration during illness requiring hospitalization is associated with high risk of mortality and long-term morbidity among children. Our objective was to develop and externally validate machine learning algorithms using electronic health records for identifying ICU transfer within 12 hours indicative of a child's condition.Observational cohort study.Two urban, tertiary-care, academic hospitals (sites 1 and 2).Pediatric inpatients (age <18 yr).None.Our primary outcome was direct ward to ICU transfer. Using age, vital signs, and laboratory results, we derived logistic regression with regularization, restricted cubic spline regression, random forest, and gradient boosted machine learning models. Among 50,830 admissions at site 1 and 88,970 admissions at site 2, 1,993 (3.92%) and 2,317 (2.60%) experienced the primary outcome, respectively. Site 1 data were split longitudinally into derivation (2009-2017) and validation (2018-2019), whereas site 2 constituted the external test cohort. Across both sites, the gradient boosted machine was the most accurate model and outperformed a modified version of the Bedside Pediatric Early Warning Score that only used physiologic variables in terms of discrimination ( C -statistic site 1: 0.84 vs 0.71, p < 0.001; site 2: 0.80 vs 0.74, p < 0.001), sensitivity, specificity, and number needed to alert.We developed and externally validated a novel machine learning model that identifies ICU transfers in hospitalized children more accurately than current tools. Our model enables early detection of children at risk for deterioration, thereby creating opportunities for intervention and improvement in outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
孙微祥完成签到,获得积分10
1秒前
等待的航空完成签到 ,获得积分10
1秒前
FashionBoy应助ginkgoleaf采纳,获得10
1秒前
谷粱紫槐完成签到,获得积分10
2秒前
情怀应助研友_ZlxxzZ采纳,获得10
2秒前
你笑一下嘛zz完成签到,获得积分10
2秒前
2秒前
机灵猕猴桃完成签到,获得积分10
3秒前
3秒前
3秒前
奥特超曼应助Ssss采纳,获得10
4秒前
Master_Ye完成签到,获得积分10
5秒前
菜菜发布了新的文献求助10
5秒前
6秒前
右右发布了新的文献求助10
6秒前
7秒前
余好运完成签到,获得积分20
7秒前
Bio应助耕牛热采纳,获得50
7秒前
tingting发布了新的文献求助10
7秒前
完美世界应助林夏采纳,获得10
7秒前
小蘑菇应助H28G采纳,获得10
8秒前
8秒前
jeffyoung发布了新的文献求助10
8秒前
9秒前
乾乾完成签到,获得积分10
9秒前
ED应助李振博采纳,获得10
9秒前
文卿发布了新的文献求助10
9秒前
钙片儿完成签到,获得积分10
10秒前
清脆立果完成签到,获得积分10
11秒前
11秒前
粗犷的凌兰完成签到,获得积分10
11秒前
11秒前
panjunlu发布了新的文献求助10
11秒前
12秒前
www0717发布了新的文献求助10
12秒前
zzz完成签到,获得积分10
13秒前
研友_ZlxxzZ完成签到,获得积分10
13秒前
归尘应助XS_QI采纳,获得10
13秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582