Direct Cell-to-Cell Equalizer for Series Battery String Using Switch-Matrix Single-Capacitor Equalizer and Optimal Pairing Algorithm

电容器 电压 电池(电) 多收费 控制理论(社会学) 电子工程 计算机科学 系列(地层学) 均衡(音频) 算法 电气工程 工程类 物理 功率(物理) 解码方法 古生物学 控制(管理) 量子力学 人工智能 生物
作者
Phuong-Ha La,Sung-Jin Choi
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:37 (7): 8625-8639 被引量:25
标识
DOI:10.1109/tpel.2022.3147842
摘要

In series battery strings, cell-inconsistency is caused by the state-of-charge (SOC) mismatch, nonidentical battery impedance, or different self-discharging rates, and this leads to overcharge and overdischarge. Practically, switched-capacitor equalizers are the most promising means to eliminate the cell inconsistency by virtue of automatic equalization, but the performance is heavily dependent on the initial cell voltage distribution and the number of series connections due to inefficient switch utilization. This article proposes a direct cell-to-cell equalizer for a series-connected battery using a switch-matrix single-capacitor converter to further improve the switched-capacitor equalizer in term of performance consistency and Coulomb efficiency. By adopting one extra current sensor and an optimal pairing algorithm, energy is transferred directly between the highest-SOC cell and the lowest-SOC cell to eliminate the impact of battery-impedance difference and false voltage measurement in battery monitoring integrated circuit caused by polarization effect. The experimental results verify the feasibility of the proposed scheme. Real-time tests are also implemented to fairly compare the proposed with the conventional methods. It is found that the performance of the proposed method is independent from initial voltage distribution in a series string, where the performance indices are consistent regardless of initial conditions. Besides, the energy loss of the proposed equalizer is further reduced and its overall efficiency is high in all test scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木木完成签到,获得积分20
刚刚
爆米花应助1ssd采纳,获得10
1秒前
Lucas应助reck采纳,获得10
1秒前
西瓜完成签到,获得积分10
1秒前
KDC发布了新的文献求助10
1秒前
潇湘完成签到 ,获得积分10
1秒前
打打应助sss采纳,获得20
1秒前
nicemice完成签到,获得积分10
1秒前
2秒前
GOODYUE发布了新的文献求助10
2秒前
热情的阿猫桑完成签到,获得积分10
3秒前
Gaojin锦完成签到,获得积分10
3秒前
3秒前
小二郎应助愉快的鞯采纳,获得10
4秒前
协和_子鱼发布了新的文献求助10
4秒前
4秒前
4秒前
Danboard发布了新的文献求助10
4秒前
HC完成签到 ,获得积分10
5秒前
小智完成签到,获得积分20
5秒前
5秒前
HopeStar发布了新的文献求助10
5秒前
5秒前
5秒前
所所应助Southluuu采纳,获得10
6秒前
摆烂fish完成签到,获得积分10
6秒前
神勇的雅香应助务实大船采纳,获得10
6秒前
www完成签到,获得积分10
6秒前
科研通AI5应助谢朝邦采纳,获得10
7秒前
如意完成签到,获得积分10
7秒前
CipherSage应助GOODYUE采纳,获得10
7秒前
7秒前
8秒前
cjq完成签到,获得积分10
8秒前
8秒前
小马甲应助123采纳,获得10
9秒前
Long完成签到,获得积分10
9秒前
10秒前
晚生四时完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759