Image Manipulation Localization Using Attentional Cross-Domain CNN Features

判别式 计算机科学 人工智能 卷积神经网络 重采样 领域(数学分析) 特征(语言学) 模式识别(心理学) 深度学习 图像(数学) 网络体系结构 机器学习 数学 数学分析 语言学 哲学 计算机安全
作者
Shuaibo Li,Shibiao Xu,Wei Ma,Qiu Zong
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (9): 5614-5628 被引量:21
标识
DOI:10.1109/tnnls.2021.3130168
摘要

Along with the advancement of manipulation technologies, image modification is becoming increasingly convenient and imperceptible. To tackle the challenging image tampering detection problem, this article presents an attentional cross-domain deep architecture, which can be trained end-to-end. This architecture is composed of three convolutional neural network (CNN) streams to extract three types of features, including visual perception, resampling, and local inconsistency features, from spatial and frequency domains. The multitype and cross-domain features are then combined to formulate hybrid features to distinguish manipulated regions from nonmanipulated parts. Compared with other deep architectures, the proposed one spans a more complementary and discriminative feature space by integrating richer types of features from different domains in a unified end-to-end trainable framework and thus can better capture artifacts caused by different types of manipulations. In addition, we design and train a module called tampering discriminative attention network (TDA-Net) to highlight suspicious parts. These part-level representations are then integrated with the global ones to further enhance the discriminating capability of the hybrid features. To adequately train the proposed architecture, we synthesize a large dataset containing various types of manipulations based on DRESDEN and COCO. Experiments on four public datasets demonstrate that the proposed model can localize various manipulations and achieve the state-of-the-art performance. We also conduct ablation studies to verify the effectiveness of each stream and the TDA-Net module.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助慎独采纳,获得10
刚刚
研友_nqa7On发布了新的文献求助10
刚刚
廖紊驳回了李健应助
刚刚
xutong de完成签到,获得积分10
1秒前
ticsadis完成签到,获得积分10
1秒前
辛勤梦桃发布了新的文献求助10
2秒前
Anthea完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
爆米花应助栗子采纳,获得10
4秒前
慕青应助vivian26采纳,获得10
5秒前
陆柯川完成签到,获得积分10
5秒前
Planetary完成签到 ,获得积分10
6秒前
Juan发布了新的文献求助10
6秒前
6秒前
7秒前
科研通AI2S应助anan采纳,获得10
7秒前
奈落完成签到 ,获得积分10
8秒前
兴奋笑天发布了新的文献求助10
9秒前
陆柯川发布了新的文献求助10
9秒前
猫尾巴发布了新的文献求助30
11秒前
威武鹤轩完成签到 ,获得积分10
11秒前
上官若男应助llk采纳,获得10
13秒前
Juan完成签到,获得积分20
13秒前
14秒前
李健应助张三采纳,获得10
15秒前
科目三应助zoeylau采纳,获得30
16秒前
16秒前
超速也文章完成签到,获得积分20
17秒前
张萝卜完成签到,获得积分10
18秒前
科研奇才发布了新的文献求助10
18秒前
猫尾巴完成签到,获得积分10
19秒前
Luisa完成签到,获得积分10
20秒前
21秒前
vivian26发布了新的文献求助10
21秒前
HEIKU应助zj杰采纳,获得10
22秒前
23秒前
xxb完成签到,获得积分10
23秒前
23秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159888
求助须知:如何正确求助?哪些是违规求助? 2810893
关于积分的说明 7889801
捐赠科研通 2469910
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630761
版权声明 602012