Image Manipulation Localization Using Attentional Cross-Domain CNN Features

判别式 计算机科学 人工智能 卷积神经网络 重采样 领域(数学分析) 特征(语言学) 模式识别(心理学) 深度学习 图像(数学) 网络体系结构 机器学习 数学 数学分析 语言学 哲学 计算机安全
作者
Shuaibo Li,Shibiao Xu,Wei Ma,Qiu Zong
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (9): 5614-5628 被引量:26
标识
DOI:10.1109/tnnls.2021.3130168
摘要

Along with the advancement of manipulation technologies, image modification is becoming increasingly convenient and imperceptible. To tackle the challenging image tampering detection problem, this article presents an attentional cross-domain deep architecture, which can be trained end-to-end. This architecture is composed of three convolutional neural network (CNN) streams to extract three types of features, including visual perception, resampling, and local inconsistency features, from spatial and frequency domains. The multitype and cross-domain features are then combined to formulate hybrid features to distinguish manipulated regions from nonmanipulated parts. Compared with other deep architectures, the proposed one spans a more complementary and discriminative feature space by integrating richer types of features from different domains in a unified end-to-end trainable framework and thus can better capture artifacts caused by different types of manipulations. In addition, we design and train a module called tampering discriminative attention network (TDA-Net) to highlight suspicious parts. These part-level representations are then integrated with the global ones to further enhance the discriminating capability of the hybrid features. To adequately train the proposed architecture, we synthesize a large dataset containing various types of manipulations based on DRESDEN and COCO. Experiments on four public datasets demonstrate that the proposed model can localize various manipulations and achieve the state-of-the-art performance. We also conduct ablation studies to verify the effectiveness of each stream and the TDA-Net module.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WM完成签到,获得积分10
刚刚
Q Eason发布了新的文献求助10
1秒前
1秒前
雪山飞龙发布了新的文献求助10
2秒前
q792309106发布了新的文献求助10
3秒前
Chris完成签到,获得积分10
3秒前
3秒前
li发布了新的文献求助10
3秒前
jenningseastera应助美丽觅夏采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
6秒前
马宇欣完成签到,获得积分10
6秒前
YZzzJ发布了新的文献求助10
6秒前
WM发布了新的文献求助10
6秒前
li完成签到,获得积分20
7秒前
8秒前
9秒前
栾瑜宝发布了新的文献求助10
9秒前
Theprisoners举报Stroeve求助涉嫌违规
10秒前
Archy发布了新的文献求助10
10秒前
Hello应助天麻zyq采纳,获得30
12秒前
范振杰完成签到,获得积分10
13秒前
keyun应助小啵采纳,获得10
13秒前
orixero应助认真跳跳糖采纳,获得10
14秒前
bind完成签到,获得积分10
15秒前
龙微微完成签到 ,获得积分10
15秒前
vicky完成签到,获得积分10
15秒前
15秒前
英俊的铭应助WM采纳,获得10
16秒前
16秒前
慕青应助欣喜的素采纳,获得10
16秒前
sdsa完成签到,获得积分10
16秒前
18秒前
栾瑜宝完成签到,获得积分20
18秒前
阳佟半仙发布了新的文献求助10
19秒前
wanglong0118完成签到,获得积分10
22秒前
JIE完成签到,获得积分10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992659
求助须知:如何正确求助?哪些是违规求助? 3533545
关于积分的说明 11262911
捐赠科研通 3273209
什么是DOI,文献DOI怎么找? 1805969
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809545