Image Manipulation Localization Using Attentional Cross-Domain CNN Features

判别式 计算机科学 人工智能 卷积神经网络 重采样 领域(数学分析) 特征(语言学) 模式识别(心理学) 深度学习 图像(数学) 网络体系结构 机器学习 数学 数学分析 语言学 哲学 计算机安全
作者
Shuaibo Li,Shibiao Xu,Wei Ma,Qiu Zong
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (9): 5614-5628 被引量:26
标识
DOI:10.1109/tnnls.2021.3130168
摘要

Along with the advancement of manipulation technologies, image modification is becoming increasingly convenient and imperceptible. To tackle the challenging image tampering detection problem, this article presents an attentional cross-domain deep architecture, which can be trained end-to-end. This architecture is composed of three convolutional neural network (CNN) streams to extract three types of features, including visual perception, resampling, and local inconsistency features, from spatial and frequency domains. The multitype and cross-domain features are then combined to formulate hybrid features to distinguish manipulated regions from nonmanipulated parts. Compared with other deep architectures, the proposed one spans a more complementary and discriminative feature space by integrating richer types of features from different domains in a unified end-to-end trainable framework and thus can better capture artifacts caused by different types of manipulations. In addition, we design and train a module called tampering discriminative attention network (TDA-Net) to highlight suspicious parts. These part-level representations are then integrated with the global ones to further enhance the discriminating capability of the hybrid features. To adequately train the proposed architecture, we synthesize a large dataset containing various types of manipulations based on DRESDEN and COCO. Experiments on four public datasets demonstrate that the proposed model can localize various manipulations and achieve the state-of-the-art performance. We also conduct ablation studies to verify the effectiveness of each stream and the TDA-Net module.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小余同学完成签到,获得积分10
1秒前
乐乐应助GGbond采纳,获得10
1秒前
万能图书馆应助GGbond采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
Ye完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
Tina完成签到,获得积分10
6秒前
领导范儿应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
ccmxigua应助科研通管家采纳,获得10
7秒前
欢呼乘风应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得30
7秒前
浮游应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
CDQ完成签到,获得积分10
9秒前
9秒前
10秒前
所所应助halo采纳,获得10
10秒前
隐形曼青应助优TT采纳,获得10
10秒前
10秒前
QWSS发布了新的文献求助10
11秒前
Tina发布了新的文献求助10
11秒前
江小刀发布了新的文献求助10
13秒前
ccc完成签到,获得积分10
13秒前
不安忆寒发布了新的文献求助10
13秒前
Akim应助温婉的篮球采纳,获得10
15秒前
今后应助咯咚采纳,获得10
15秒前
华仔应助Certainty橙子采纳,获得10
15秒前
平常心发布了新的文献求助10
15秒前
zhzhzh发布了新的文献求助10
15秒前
LZR完成签到,获得积分10
16秒前
18秒前
陀罗尼烈珀完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646495
求助须知:如何正确求助?哪些是违规求助? 4771505
关于积分的说明 15035374
捐赠科研通 4805305
什么是DOI,文献DOI怎么找? 2569593
邀请新用户注册赠送积分活动 1526581
关于科研通互助平台的介绍 1485858