Image Manipulation Localization Using Attentional Cross-Domain CNN Features

判别式 计算机科学 人工智能 卷积神经网络 重采样 领域(数学分析) 特征(语言学) 模式识别(心理学) 深度学习 图像(数学) 网络体系结构 机器学习 数学 数学分析 语言学 哲学 计算机安全
作者
Shuaibo Li,Shibiao Xu,Wei Ma,Qiu Zong
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (9): 5614-5628 被引量:26
标识
DOI:10.1109/tnnls.2021.3130168
摘要

Along with the advancement of manipulation technologies, image modification is becoming increasingly convenient and imperceptible. To tackle the challenging image tampering detection problem, this article presents an attentional cross-domain deep architecture, which can be trained end-to-end. This architecture is composed of three convolutional neural network (CNN) streams to extract three types of features, including visual perception, resampling, and local inconsistency features, from spatial and frequency domains. The multitype and cross-domain features are then combined to formulate hybrid features to distinguish manipulated regions from nonmanipulated parts. Compared with other deep architectures, the proposed one spans a more complementary and discriminative feature space by integrating richer types of features from different domains in a unified end-to-end trainable framework and thus can better capture artifacts caused by different types of manipulations. In addition, we design and train a module called tampering discriminative attention network (TDA-Net) to highlight suspicious parts. These part-level representations are then integrated with the global ones to further enhance the discriminating capability of the hybrid features. To adequately train the proposed architecture, we synthesize a large dataset containing various types of manipulations based on DRESDEN and COCO. Experiments on four public datasets demonstrate that the proposed model can localize various manipulations and achieve the state-of-the-art performance. We also conduct ablation studies to verify the effectiveness of each stream and the TDA-Net module.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
iedith018完成签到,获得积分10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
1秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
wanci应助老实紫萱采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
香蕉诗蕊应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
zjj发布了新的文献求助10
5秒前
5秒前
5秒前
xiaofang完成签到,获得积分10
6秒前
6秒前
love发布了新的文献求助10
6秒前
安详猕猴桃完成签到,获得积分10
7秒前
汉堡包应助承乐采纳,获得30
8秒前
Unicorn发布了新的文献求助10
9秒前
无花果应助小小米采纳,获得10
9秒前
朴素太阳发布了新的文献求助10
9秒前
10秒前
12秒前
12秒前
小蘑菇应助夭夭采纳,获得10
14秒前
Akim应助zjj采纳,获得10
15秒前
15秒前
和谐听白发布了新的文献求助10
16秒前
guozizi发布了新的文献求助10
16秒前
iedith018发布了新的文献求助10
16秒前
16秒前
哈哈哈发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569633
求助须知:如何正确求助?哪些是违规求助? 4654420
关于积分的说明 14710265
捐赠科研通 4595934
什么是DOI,文献DOI怎么找? 2522161
邀请新用户注册赠送积分活动 1493390
关于科研通互助平台的介绍 1463987