Image Manipulation Localization Using Attentional Cross-Domain CNN Features

判别式 计算机科学 人工智能 卷积神经网络 重采样 领域(数学分析) 特征(语言学) 模式识别(心理学) 深度学习 图像(数学) 网络体系结构 机器学习 数学 数学分析 语言学 哲学 计算机安全
作者
Shuaibo Li,Shibiao Xu,Wei Ma,Qiu Zong
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (9): 5614-5628 被引量:26
标识
DOI:10.1109/tnnls.2021.3130168
摘要

Along with the advancement of manipulation technologies, image modification is becoming increasingly convenient and imperceptible. To tackle the challenging image tampering detection problem, this article presents an attentional cross-domain deep architecture, which can be trained end-to-end. This architecture is composed of three convolutional neural network (CNN) streams to extract three types of features, including visual perception, resampling, and local inconsistency features, from spatial and frequency domains. The multitype and cross-domain features are then combined to formulate hybrid features to distinguish manipulated regions from nonmanipulated parts. Compared with other deep architectures, the proposed one spans a more complementary and discriminative feature space by integrating richer types of features from different domains in a unified end-to-end trainable framework and thus can better capture artifacts caused by different types of manipulations. In addition, we design and train a module called tampering discriminative attention network (TDA-Net) to highlight suspicious parts. These part-level representations are then integrated with the global ones to further enhance the discriminating capability of the hybrid features. To adequately train the proposed architecture, we synthesize a large dataset containing various types of manipulations based on DRESDEN and COCO. Experiments on four public datasets demonstrate that the proposed model can localize various manipulations and achieve the state-of-the-art performance. We also conduct ablation studies to verify the effectiveness of each stream and the TDA-Net module.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
cc完成签到,获得积分10
2秒前
2秒前
3秒前
嘿嘿发布了新的文献求助10
3秒前
天天快乐应助Violeta采纳,获得10
3秒前
华仔应助今夜无人入眠采纳,获得10
3秒前
4秒前
5秒前
山野完成签到,获得积分10
6秒前
梦将军发布了新的文献求助30
6秒前
pass发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
后来完成签到,获得积分10
7秒前
内向的小白菜应助xie采纳,获得10
7秒前
ZOOOEY完成签到,获得积分20
8秒前
春天的粥完成签到 ,获得积分10
8秒前
8秒前
lsh完成签到,获得积分10
8秒前
huahuahua完成签到,获得积分10
9秒前
10秒前
Xie发布了新的文献求助10
10秒前
10秒前
文献达人发布了新的文献求助10
10秒前
10秒前
衾空完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
所所应助薛华倩采纳,获得10
11秒前
12秒前
清秀幻天完成签到 ,获得积分10
12秒前
sxy发布了新的文献求助10
13秒前
hjy发布了新的文献求助10
13秒前
Yolanda发布了新的文献求助10
13秒前
13秒前
情怀应助pojian采纳,获得10
14秒前
14秒前
隐形曼青应助文献达人采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552820
求助须知:如何正确求助?哪些是违规求助? 4637591
关于积分的说明 14649723
捐赠科研通 4579329
什么是DOI,文献DOI怎么找? 2511568
邀请新用户注册赠送积分活动 1486590
关于科研通互助平台的介绍 1457559