Image Manipulation Localization Using Attentional Cross-Domain CNN Features

判别式 计算机科学 人工智能 卷积神经网络 重采样 领域(数学分析) 特征(语言学) 模式识别(心理学) 深度学习 图像(数学) 网络体系结构 机器学习 数学 数学分析 哲学 语言学 计算机安全
作者
Shuaibo Li,Shibiao Xu,Wei Ma,Qiu Zong
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (9): 5614-5628 被引量:26
标识
DOI:10.1109/tnnls.2021.3130168
摘要

Along with the advancement of manipulation technologies, image modification is becoming increasingly convenient and imperceptible. To tackle the challenging image tampering detection problem, this article presents an attentional cross-domain deep architecture, which can be trained end-to-end. This architecture is composed of three convolutional neural network (CNN) streams to extract three types of features, including visual perception, resampling, and local inconsistency features, from spatial and frequency domains. The multitype and cross-domain features are then combined to formulate hybrid features to distinguish manipulated regions from nonmanipulated parts. Compared with other deep architectures, the proposed one spans a more complementary and discriminative feature space by integrating richer types of features from different domains in a unified end-to-end trainable framework and thus can better capture artifacts caused by different types of manipulations. In addition, we design and train a module called tampering discriminative attention network (TDA-Net) to highlight suspicious parts. These part-level representations are then integrated with the global ones to further enhance the discriminating capability of the hybrid features. To adequately train the proposed architecture, we synthesize a large dataset containing various types of manipulations based on DRESDEN and COCO. Experiments on four public datasets demonstrate that the proposed model can localize various manipulations and achieve the state-of-the-art performance. We also conduct ablation studies to verify the effectiveness of each stream and the TDA-Net module.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助511采纳,获得10
刚刚
粗心的无剑完成签到 ,获得积分10
刚刚
1秒前
彭于晏应助sll采纳,获得10
1秒前
罗兴鲜发布了新的文献求助10
2秒前
2秒前
2秒前
核桃应助科研通管家采纳,获得30
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
3秒前
小张应助科研通管家采纳,获得10
3秒前
popvich应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得30
3秒前
小lu应助bdJ采纳,获得10
3秒前
冷艳迎蕾应助科研通管家采纳,获得30
3秒前
CipherSage应助科研通管家采纳,获得30
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
namk完成签到,获得积分10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
黄紫红蓝发布了新的文献求助10
3秒前
???完成签到,获得积分10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得30
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
糊涂塌客完成签到,获得积分10
4秒前
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
伏坎完成签到,获得积分10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
852应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
鸡蛋布丁发布了新的文献求助30
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258146
求助须知:如何正确求助?哪些是违规求助? 4420085
关于积分的说明 13759156
捐赠科研通 4293598
什么是DOI,文献DOI怎么找? 2356080
邀请新用户注册赠送积分活动 1352449
关于科研通互助平台的介绍 1313237