Image Manipulation Localization Using Attentional Cross-Domain CNN Features

判别式 计算机科学 人工智能 卷积神经网络 重采样 领域(数学分析) 特征(语言学) 模式识别(心理学) 深度学习 图像(数学) 网络体系结构 机器学习 数学 数学分析 语言学 哲学 计算机安全
作者
Shuaibo Li,Shibiao Xu,Wei Ma,Qiu Zong
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (9): 5614-5628 被引量:26
标识
DOI:10.1109/tnnls.2021.3130168
摘要

Along with the advancement of manipulation technologies, image modification is becoming increasingly convenient and imperceptible. To tackle the challenging image tampering detection problem, this article presents an attentional cross-domain deep architecture, which can be trained end-to-end. This architecture is composed of three convolutional neural network (CNN) streams to extract three types of features, including visual perception, resampling, and local inconsistency features, from spatial and frequency domains. The multitype and cross-domain features are then combined to formulate hybrid features to distinguish manipulated regions from nonmanipulated parts. Compared with other deep architectures, the proposed one spans a more complementary and discriminative feature space by integrating richer types of features from different domains in a unified end-to-end trainable framework and thus can better capture artifacts caused by different types of manipulations. In addition, we design and train a module called tampering discriminative attention network (TDA-Net) to highlight suspicious parts. These part-level representations are then integrated with the global ones to further enhance the discriminating capability of the hybrid features. To adequately train the proposed architecture, we synthesize a large dataset containing various types of manipulations based on DRESDEN and COCO. Experiments on four public datasets demonstrate that the proposed model can localize various manipulations and achieve the state-of-the-art performance. We also conduct ablation studies to verify the effectiveness of each stream and the TDA-Net module.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xibei完成签到 ,获得积分10
1秒前
3秒前
5秒前
5秒前
7秒前
风中的英发布了新的文献求助50
8秒前
昏睡的语山完成签到 ,获得积分10
8秒前
靴子发布了新的文献求助10
10秒前
11秒前
四憙完成签到 ,获得积分10
13秒前
美好斓发布了新的文献求助10
17秒前
shenxian82133完成签到,获得积分10
17秒前
17秒前
内向的大白完成签到,获得积分10
19秒前
CodeCraft应助布溜采纳,获得10
20秒前
hakunamatata完成签到 ,获得积分10
20秒前
21秒前
乐枳发布了新的文献求助10
22秒前
偷乐发布了新的文献求助10
23秒前
无情人杰完成签到 ,获得积分10
23秒前
fjsfff发布了新的文献求助10
24秒前
小阳完成签到 ,获得积分10
24秒前
25秒前
含羞草发布了新的文献求助10
25秒前
FashionBoy应助科研通管家采纳,获得10
26秒前
852应助科研通管家采纳,获得10
27秒前
Orange应助科研通管家采纳,获得20
27秒前
领导范儿应助科研通管家采纳,获得10
27秒前
aurora应助科研通管家采纳,获得10
27秒前
脑洞疼应助科研通管家采纳,获得10
27秒前
Piyush321应助什米采纳,获得10
27秒前
Hello应助科研通管家采纳,获得10
27秒前
27秒前
隐形曼青应助科研通管家采纳,获得10
27秒前
ding应助科研通管家采纳,获得10
27秒前
顾矜应助科研通管家采纳,获得10
27秒前
852应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
NexusExplorer应助科研通管家采纳,获得10
28秒前
Owen应助科研通管家采纳,获得10
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736110
求助须知:如何正确求助?哪些是违规求助? 3279874
关于积分的说明 10017385
捐赠科研通 2996546
什么是DOI,文献DOI怎么找? 1644134
邀请新用户注册赠送积分活动 781787
科研通“疑难数据库(出版商)”最低求助积分说明 749462