Deep dispatching: A deep reinforcement learning approach for vehicle dispatching on online ride-hailing platform

强化学习 计算机科学 车队管理 工作流程 分类 分布式计算 调度(生产过程) 运筹学 人工智能 工程类 数据库 运营管理 电信 程序设计语言
作者
Yang Liu,Fanyou Wu,Cheng Lyu,Shen Li,Jieping Ye,Xiaobo Qu
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier BV]
卷期号:161: 102694-102694 被引量:95
标识
DOI:10.1016/j.tre.2022.102694
摘要

The vehicle dispatching system is one of the most critical problems in online ride-hailing platforms, which requires adapting the operation and management strategy to the dynamics of demand and supply. In this paper, we propose a single-agent deep reinforcement learning approach for the vehicle dispatching problem called deep dispatching, by reallocating vacant vehicles to regions with a large demand gap in advance. The simulator and the vehicle dispatching algorithm are designed based on industrial-scale real-world data and the workflow of online ride-hailing platforms, ensuring the practical value of our approach. Besides, the vehicle dispatching problem is translated in analogy with the load balancing problem in computer networks. Inspired by the recommendation system, the problem of high concurrency of dispatching requests is addressed by sorting the actions as a recommendation list, whereby matching action with requests. Experiments demonstrate that the proposed approach is superior to existing benchmarks. It is also worth noting that the proposed approach won first place in the vehicle dispatching task of KDD Cup 2020.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助眼睛大花生采纳,获得10
刚刚
xxxx发布了新的文献求助10
1秒前
2秒前
3秒前
ZY完成签到,获得积分20
4秒前
4秒前
CAOHOU应助kkdkg采纳,获得10
5秒前
洛洛发布了新的文献求助20
6秒前
Akim应助笑语盈盈采纳,获得10
6秒前
牛牛完成签到,获得积分10
7秒前
oh应助6543210采纳,获得10
8秒前
8秒前
9秒前
mariawang发布了新的文献求助10
9秒前
理理理理发布了新的文献求助10
9秒前
9秒前
舒心莫言完成签到,获得积分10
11秒前
时臣的错发布了新的文献求助10
11秒前
赘婿应助科研通管家采纳,获得10
12秒前
yar应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
12秒前
pluto应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
ding应助科研通管家采纳,获得10
12秒前
pluto应助科研通管家采纳,获得10
12秒前
科研助手6应助科研通管家采纳,获得10
12秒前
思源应助科研通管家采纳,获得10
12秒前
FIN应助科研通管家采纳,获得30
12秒前
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
科研助手6应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
瑶瑶瑶发布了新的文献求助30
13秒前
13秒前
13秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998480
求助须知:如何正确求助?哪些是违规求助? 3537993
关于积分的说明 11273002
捐赠科研通 3276991
什么是DOI,文献DOI怎么找? 1807228
邀请新用户注册赠送积分活动 883823
科研通“疑难数据库(出版商)”最低求助积分说明 810049