Generative Oversampling Methods for Handling Imbalanced Data in Software Fault Prediction

过采样 机器学习 计算机科学 断层(地质) 人工智能 软件 数据挖掘 班级(哲学) 软件错误 计算机网络 带宽(计算) 地震学 程序设计语言 地质学
作者
Santosh Singh Rathore,Satyendra Singh Chouhan,Dixit Kumar Jain,Aakash Gopal Vachhani
出处
期刊:IEEE Transactions on Reliability [Institute of Electrical and Electronics Engineers]
卷期号:71 (2): 747-762 被引量:25
标识
DOI:10.1109/tr.2022.3158949
摘要

Imbalanced software fault datasets, having fewer faulty modules than the nonfaulty modules, make accurate fault prediction difficult. It is challenging for software practitioners to handle imbalanced fault data during software fault prediction (SFP). Earlier, several researchers have applied oversampling techniques such as synthetic minority oversampling techniques and others for imbalanced learning in SFP. However, most of these techniques resulted in overfitted prediction models. This article presents generative oversampling methods to handle imbalanced data problems in the SFP. Using the generative adversarial network (GAN) based approach, the presented methods generate synthetic samples of the faulty modules to balance the proportion of faulty and nonfaulty modules in the fault datasets. Further, SFP models are built on the processed fault datasets using different machine learning techniques. Experimental validation of the presented oversampling methods is done on 18 fault datasets gathered from PROMISE, JIRA, Eclipse data repositories, and precision, recall, f1-score, and AUC are used as evaluation measures. We extensively compared presented oversampling methods with various state-of-the-art class imbalance techniques and baseline models. The experimental results evidenced that the presented methods improved fault prediction performance and yielded better performance than the state-of-the-art class imbalance techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Insomthea完成签到 ,获得积分10
1秒前
stuffmatter应助13531186143采纳,获得10
2秒前
懒橘希希完成签到,获得积分10
3秒前
qwq发布了新的文献求助30
3秒前
十四奥完成签到,获得积分10
3秒前
jiangchuansm完成签到,获得积分10
4秒前
9527发布了新的文献求助10
4秒前
顾矜应助hjkk采纳,获得10
5秒前
小二郎应助zrw采纳,获得10
5秒前
5秒前
925发布了新的文献求助10
5秒前
852应助阳光保温杯采纳,获得10
6秒前
科研通AI5应助王饱饱采纳,获得10
6秒前
生动的葶应助LIU采纳,获得10
7秒前
大意的绿蓉完成签到,获得积分10
8秒前
9秒前
迟大猫应助cff采纳,获得20
9秒前
NexusExplorer应助Drwang采纳,获得10
9秒前
吡咯爱成环应助LELE采纳,获得10
10秒前
11秒前
11秒前
yufei完成签到 ,获得积分20
11秒前
12秒前
55完成签到,获得积分10
12秒前
12秒前
Akim应助周至采纳,获得10
12秒前
12秒前
绿大暗完成签到,获得积分10
13秒前
小园饼干发布了新的文献求助10
13秒前
科研通AI5应助游戏人间采纳,获得10
13秒前
JamesPei应助壮观问寒采纳,获得10
14秒前
深情安青应助phy采纳,获得10
15秒前
15秒前
妮妮完成签到 ,获得积分10
16秒前
Owen应助偏爱采纳,获得10
16秒前
路路通发布了新的文献求助10
16秒前
16秒前
CHENG发布了新的文献求助10
17秒前
17秒前
wcj发布了新的文献求助10
17秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483504
求助须知:如何正确求助?哪些是违规求助? 3072815
关于积分的说明 9128148
捐赠科研通 2764341
什么是DOI,文献DOI怎么找? 1517190
邀请新用户注册赠送积分活动 701937
科研通“疑难数据库(出版商)”最低求助积分说明 700797