Generative Oversampling Methods for Handling Imbalanced Data in Software Fault Prediction

过采样 机器学习 计算机科学 断层(地质) 人工智能 软件 数据挖掘 班级(哲学) 软件错误 计算机网络 带宽(计算) 地震学 程序设计语言 地质学
作者
Santosh Singh Rathore,Satyendra Singh Chouhan,Dixit Kumar Jain,Aakash Gopal Vachhani
出处
期刊:IEEE Transactions on Reliability [Institute of Electrical and Electronics Engineers]
卷期号:71 (2): 747-762 被引量:25
标识
DOI:10.1109/tr.2022.3158949
摘要

Imbalanced software fault datasets, having fewer faulty modules than the nonfaulty modules, make accurate fault prediction difficult. It is challenging for software practitioners to handle imbalanced fault data during software fault prediction (SFP). Earlier, several researchers have applied oversampling techniques such as synthetic minority oversampling techniques and others for imbalanced learning in SFP. However, most of these techniques resulted in overfitted prediction models. This article presents generative oversampling methods to handle imbalanced data problems in the SFP. Using the generative adversarial network (GAN) based approach, the presented methods generate synthetic samples of the faulty modules to balance the proportion of faulty and nonfaulty modules in the fault datasets. Further, SFP models are built on the processed fault datasets using different machine learning techniques. Experimental validation of the presented oversampling methods is done on 18 fault datasets gathered from PROMISE, JIRA, Eclipse data repositories, and precision, recall, f1-score, and AUC are used as evaluation measures. We extensively compared presented oversampling methods with various state-of-the-art class imbalance techniques and baseline models. The experimental results evidenced that the presented methods improved fault prediction performance and yielded better performance than the state-of-the-art class imbalance techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘世昇发布了新的文献求助10
1秒前
NexusExplorer应助好运莲莲采纳,获得10
1秒前
yin景景完成签到,获得积分10
3秒前
Akim应助金秋时节雨纷纷采纳,获得10
4秒前
lito完成签到,获得积分10
5秒前
求助人员发布了新的文献求助10
5秒前
FashionBoy应助辛勤凝丝采纳,获得10
6秒前
6秒前
安徽梁朝伟完成签到,获得积分10
7秒前
勤劳寡妇发布了新的文献求助10
7秒前
xiaoju完成签到,获得积分20
7秒前
JamesPei应助阳静采纳,获得10
8秒前
刺槐完成签到,获得积分10
8秒前
璆璆的虾完成签到,获得积分10
10秒前
ICSSCI完成签到,获得积分10
12秒前
12秒前
小小发布了新的文献求助200
12秒前
12秒前
善学以致用应助loogn7采纳,获得10
13秒前
keyancui完成签到,获得积分10
14秒前
求助人员发布了新的文献求助10
16秒前
所所应助nana采纳,获得10
16秒前
欢喜大白菜真实的钥匙完成签到 ,获得积分10
16秒前
橙黄橘绿时imm完成签到,获得积分10
16秒前
17秒前
17秒前
青仔仔完成签到,获得积分10
18秒前
忧郁子骞完成签到,获得积分10
18秒前
生活的狗发布了新的文献求助10
18秒前
19秒前
香蕉觅云应助牛牛采纳,获得10
19秒前
19秒前
美兮完成签到,获得积分10
20秒前
21秒前
绝世大魔王完成签到 ,获得积分10
22秒前
Richard发布了新的文献求助10
22秒前
hdc12138完成签到,获得积分10
23秒前
QAQ77发布了新的文献求助10
25秒前
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565388
求助须知:如何正确求助?哪些是违规求助? 4650379
关于积分的说明 14690990
捐赠科研通 4592263
什么是DOI,文献DOI怎么找? 2519544
邀请新用户注册赠送积分活动 1491994
关于科研通互助平台的介绍 1463199