Machine-learning-guided reaction kinetics prediction towards solvent identification for chemical absorption of carbonyl sulfide

位阻效应 化学 反应速率常数 动力学 化学动力学 溶剂 溶剂效应 反应速率 吸收(声学) 计算化学 有机化学 催化作用 材料科学 量子力学 物理 复合材料
作者
Yuxiang Chen,Chuanlei Liu,Guanchu Guo,Yang Zhao,Qian Cheng,Hao Jiang,Benxian Shen,Di Wu,Fahai Cao,Hui Sun
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:444: 136662-136662 被引量:11
标识
DOI:10.1016/j.cej.2022.136662
摘要

• Machine learning model was constructed to predict reaction kinetics of carbonyl sulfide with solvents. • Reaction rate constants of determining step were obtained via computation. • Charge distribution and steric hindrance of solvent molecules largely determine reaction kinetics. • Two custom-defined descriptors representing the steric hindrance of amine groups improve kinetics predication. Exploring solvents for chemical absorption of carbonyl sulfide (COS) is largely hindered because of challenging study of reaction kinetics by means of either experimental or computational methods. Machine learning (ML) has been proven to greatly accelerate information identification and function achievement in academic and industrial fields. Herein, we report a machine-learning-guided reaction kinetics prediction for intelligent identification of promising compounds for chemical absorption of COS. The rate-determining step for solvent-involved reaction of COS was firstly recognized and the reaction rate constants of determining step were obtained via quantum chemistry computations in order to establish the initial training dataset. Furthermore, two molecular descriptors, alphaV and betaV, representing the steric hindrance around the amine groups were defined to build the ML algorithm and the SHapley Additive exPlanations (SHAP) approach was used to interpret the model. By introducing four specific descriptors, our ML model exhibits the largely reduced mean absolute error ( MAE ) of 0.80 for predicting the rate constants (log k ) for COS reaction with potential solvents. These reaction rates are primarily determined by the charge distribution and steric hindrance of solvent molecules. Documented data confirm that our ML model involving custom-defined molecular descriptors successfully predict the reaction kinetics. This study enables a general strategy for machine-learning-guided exploration and identification of solvent candidates for compound capture and separation through chemical absorption process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ldd完成签到,获得积分10
刚刚
GJT0427gjt完成签到,获得积分10
1秒前
1秒前
@77发布了新的文献求助30
2秒前
零相似完成签到,获得积分10
3秒前
Final发布了新的文献求助10
4秒前
杨杨杨发布了新的文献求助10
7秒前
星辰大海应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
ATLI应助科研通管家采纳,获得20
9秒前
superxiao应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
10秒前
124应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
QOP应助科研通管家采纳,获得10
10秒前
1+1完成签到,获得积分0
10秒前
superxiao应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
1351567822应助科研通管家采纳,获得150
10秒前
10秒前
潘果果完成签到,获得积分10
13秒前
14秒前
赘婿应助陈老派采纳,获得10
14秒前
赘婿应助风语采纳,获得10
16秒前
爆米花应助巫马白亦采纳,获得10
17秒前
赘婿应助aliime采纳,获得10
19秒前
威武皮带完成签到,获得积分10
19秒前
陈老派完成签到,获得积分10
20秒前
20秒前
taozidetao完成签到 ,获得积分10
21秒前
大个应助高挑的小蕊采纳,获得10
22秒前
陈老派发布了新的文献求助10
24秒前
benbenbear发布了新的文献求助10
24秒前
简单的丑发布了新的文献求助10
25秒前
645654564发布了新的文献求助10
25秒前
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672461
求助须知:如何正确求助?哪些是违规求助? 3228752
关于积分的说明 9781866
捐赠科研通 2939164
什么是DOI,文献DOI怎么找? 1610648
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174