气凝胶
材料科学
纳米颗粒
电化学
纳米材料
碳纤维
欠电位沉积
纳米技术
化学工程
比表面积
纳米结构
法拉第效率
催化作用
电极
循环伏安法
化学
复合材料
有机化学
物理化学
复合数
工程类
作者
Piyush Chauhan,Karl Hiekel,Justus S. Diercks,Juan Herranz,Viktoriia A. Saveleva,Pavel Khavlyuk,Alexander Eychmüller,Thomas J. Schmidt
标识
DOI:10.1021/acsmaterialsau.1c00067
摘要
The efficient scale-up of CO2-reduction technologies is a pivotal step to facilitate intermittent energy storage and for closing the carbon cycle. However, there is a need to minimize the occurrence of undesirable side reactions like H2 evolution and achieve selective production of value-added CO2-reduction products (CO and HCOO-) at as-high-as-possible current densities. Employing novel electrocatalysts such as unsupported metal aerogels, which possess a highly porous three-dimensional nanostructure, offers a plausible approach to realize this. In this study, we first quantify the electrochemical surface area of an Au aerogel (≈5 nm in web thickness) using the surface oxide-reduction and copper underpotential deposition methods. Subsequently, the aerogel is tested for its CO2-reduction performance in an in-house developed, two-compartment electrochemical cell. For comparison purposes, similar measurements are also performed on polycrystalline Au and a commercial catalyst consisting of Au nanoparticles supported on carbon black (Au/C). The Au aerogel exhibits a faradaic efficiency of ≈97% for CO production at ≈-0.48 VRHE, with a suppression of H2 production compared to Au/C that we ascribe to its larger Au-particle size. Finally, identical-location transmission electron microscopy of both nanomaterials before and after CO2-reduction reveals that, unlike Au/C, the aerogel network retains its nanoarchitecture at the potential of peak CO production.
科研通智能强力驱动
Strongly Powered by AbleSci AI