Microplastic detection and identification by Nile red staining: Towards a semi-automated, cost- and time-effective technique

微塑料 尼罗河红 鉴定(生物学) 环境科学 塑料污染 计算机科学 生化工程 自动化 吞吐量 工程类 生态学 生物 荧光 量子力学 电信 机械工程 物理 无线
作者
Nelle Meyers,Ana I. Catarino,Annelies Declercq,Aisling Brenan,Lisa Devriese,M. Vandegehuchte,Bavo De Witte,Colin Janssen,Gert Everaert
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:823: 153441-153441 被引量:85
标识
DOI:10.1016/j.scitotenv.2022.153441
摘要

Microplastic pollution is an issue of concern due to the accumulation rates in the marine environment combined with the limited knowledge about their abundance, distribution and associated environmental impacts. However, surveying and monitoring microplastics in the environment can be time consuming and costly. The development of cost- and time-effective methods is imperative to overcome some of the current critical bottlenecks in microplastic detection and identification, and to advance microplastics research. Here, an innovative approach for microplastic analysis is presented that combines the advantages of high-throughput screening with those of automation. The proposed approach used Red Green Blue (RGB) data extracted from photos of Nile red-fluorescently stained microplastics (50-1200 μm) to train and validate a 'Plastic Detection Model' (PDM) and a 'Polymer Identification Model' (PIM). These two supervised machine learning models predicted with high accuracy the plastic or natural origin of particles (95.8%), and the polymer types of the microplastics (88.1%). The applicability of the PDM and the PIM was demonstrated by successfully using the models to detect (92.7%) and identify (80%) plastic particles in spiked environmental samples that underwent laboratorial processing. The classification models represent a semi-automated, high-throughput and reproducible method to characterize microplastics in a straightforward, cost- and time-effective yet reliable way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LiXQ完成签到,获得积分10
1秒前
小杨弟弟完成签到,获得积分10
1秒前
2秒前
今后应助闪闪的阑香采纳,获得10
2秒前
3秒前
April完成签到,获得积分20
3秒前
3秒前
华仔应助轻松的雨旋采纳,获得10
3秒前
小二郎应助stars采纳,获得10
3秒前
乐乐乐乐乐乐应助Freya采纳,获得10
3秒前
4秒前
5秒前
LiXQ发布了新的文献求助10
5秒前
今后应助IAMXC采纳,获得10
5秒前
大模型应助丰富的硬币采纳,获得10
6秒前
爆米花应助理想三寻采纳,获得10
7秒前
务实的艳一完成签到,获得积分10
8秒前
你爸爸完成签到,获得积分10
8秒前
回水发布了新的文献求助10
9秒前
9秒前
11秒前
刻苦紫文完成签到 ,获得积分10
13秒前
wanci应助Tree采纳,获得20
14秒前
好好学习完成签到,获得积分10
14秒前
我是老大应助GWZZ采纳,获得10
14秒前
医路上的小学生关注了科研通微信公众号
15秒前
moxi摩西完成签到,获得积分10
16秒前
16秒前
医路上的小学生关注了科研通微信公众号
16秒前
16秒前
Singularity应助小白采纳,获得10
16秒前
虚幻的安柏完成签到,获得积分10
17秒前
和谐平蝶完成签到,获得积分10
18秒前
大个应助糟糕的富采纳,获得10
19秒前
19秒前
ffchen111发布了新的文献求助10
19秒前
20秒前
若狂发布了新的文献求助10
20秒前
20秒前
好好学习的大大莹完成签到,获得积分10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145597
求助须知:如何正确求助?哪些是违规求助? 2797033
关于积分的说明 7822546
捐赠科研通 2453369
什么是DOI,文献DOI怎么找? 1305607
科研通“疑难数据库(出版商)”最低求助积分说明 627514
版权声明 601464