Development and validation using NHANES data of a predictive model for depression risk in myocardial infarction survivors

列线图 单变量 多元统计 拟合优度 医学 接收机工作特性 Lasso(编程语言) 统计 内科学 数学 计算机科学 万维网
作者
Di Wang,Siqi Jia,Shaoyi Yan,Yongping Jia
出处
期刊:Heliyon [Elsevier]
卷期号:8 (1): e08853-e08853 被引量:7
标识
DOI:10.1016/j.heliyon.2022.e08853
摘要

Depression after myocardial infarction (MI) is associated with poor prognosis. This study aimed to develop and validate a nomogram to predict the risk of depression in patients with MI.This retrospective study included 1615 survivors of MI aged >20 years who were selected from the 2005-2018 National Health and Nutrition Examination Survey database. The 899 subjects from the 2005-2012 survey comprised the development group, and the remaining 716 subjects comprised the validation group. Univariate and multivariate analyses identified variables significantly associated with depression. The least absolute shrinkage and selection operator (LASSO) binomial regression model was used to select the best predictive variables.A full predictive model and a simplified model were developed using multivariate analysis and LASSO binomial regression results, respectively, and validated using data from the validation group. The receiver operator characteristic curve and Hosmer-Lemeshow goodness of fit test were used to assess the nomogram's performance. The full nomogram model included 8 items: age, BMI, smoking, drinking, diabetes, exercise, insomnia, and PIR. The area under the curve for the development group was 0.799 and for the validation group was 0.731, indicating that our model has good stability and predictive accuracy. The goodness of fit test showed a good model calibration for both groups. The simplified model includes age, smoking, PIR, and insomnia. The AUC of the simplified model was 0.772 and 0.711 in the development and validation groups, respectively, indicating that the simplified model still possessed good predictive accuracy.Our nomogram helped assess the individual probability of depression after MI and can be used as a complement to existing depression screening scales to help physicians make better treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cocolu应助ruohanyu采纳,获得10
1秒前
1秒前
2秒前
4秒前
4秒前
毛豆应助童英浩采纳,获得10
4秒前
JO LIN完成签到,获得积分10
4秒前
Owen应助vv采纳,获得10
5秒前
毛豆应助vv采纳,获得10
5秒前
万能图书馆应助vv采纳,获得10
5秒前
5秒前
33发布了新的文献求助10
5秒前
十一玮应助lh采纳,获得10
5秒前
longlong发布了新的文献求助10
6秒前
政政勇闯世界完成签到,获得积分10
6秒前
6秒前
7秒前
JO LIN发布了新的文献求助10
8秒前
rcrc111发布了新的文献求助10
8秒前
跳跃的访琴完成签到 ,获得积分10
9秒前
9秒前
LLL完成签到 ,获得积分10
9秒前
Ava应助谨慎雨双采纳,获得30
9秒前
AAA111122发布了新的文献求助10
10秒前
乘风破浪发布了新的文献求助10
11秒前
Yr发布了新的文献求助10
11秒前
12秒前
丘比特应助湖医小朱采纳,获得10
12秒前
求求啦发布了新的文献求助30
13秒前
kpktvn发布了新的文献求助10
13秒前
14秒前
木香发布了新的文献求助30
14秒前
白华苍松发布了新的文献求助10
15秒前
Jasper应助诚c采纳,获得10
15秒前
小程同学发布了新的文献求助10
15秒前
星辰大海应助斯文明杰采纳,获得10
15秒前
Darling完成签到,获得积分10
15秒前
王海海完成签到,获得积分10
16秒前
huang’发布了新的文献求助10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454966
求助须知:如何正确求助?哪些是违规求助? 3050269
关于积分的说明 9020709
捐赠科研通 2738874
什么是DOI,文献DOI怎么找? 1502329
科研通“疑难数据库(出版商)”最低求助积分说明 694480
邀请新用户注册赠送积分活动 693178