细胞生物学
细胞外小泡
炎症
细胞外
间充质干细胞
小泡
胞外囊泡
干细胞
生物
化学
微泡
免疫学
小RNA
生物化学
基因
膜
作者
Hui Liu,Luming Zhang,Meilian Li,Fengzhi Zhao,Fan Lü,Feng Zhang,Sida Chen,Juntao Guo,Rui Zhang,Haiyan Yin
标识
DOI:10.1016/j.bbrc.2022.02.009
摘要
Alveolar macrophage activation and apoptosis are vital contributors to sepsis-associated acute lung injury (ALI). However, the mechanisms of alveolar macrophage activation are yet to be clarified. Death-associated protein kinase 1 (DAPK1) is one of the potential candidates that play crucial roles in regulating alveolar macrophage inflammation. Herein, we found that primary human bone mesenchymal stem cell (BMSC)-derived extracellular vesicles (EVs) antagonize LPS-induced inflammation in the THP-1 human macrophage-like cell line. Mechanistically, LPS stimulation elevates the expression of DAPK1 and the inflammation markers in THP-1 cells, while BMSC-derived EVs inhibit the expression of DAPK1 and inflammation through delivering miR-191, which can target the 3′-UTR of the DAPK1 mRNA and therefore suppress its translation. The importance of DAPK1 in the activation of THP-1 is also stressed in this study. Our findings provide evidence that BMSC-derived EVs regulate the alveolar macrophage inflammation and highlight BMSC-derived EVs as a potential vehicle to deliver biomacromolecules to macrophages.
科研通智能强力驱动
Strongly Powered by AbleSci AI