Spatiotemporal Hybrid Random Forest Model for Tea Yield Prediction Using Satellite-Derived Variables

随机森林 粮食安全 特征选择 产量(工程) 农业工程 环境科学 计算机科学 农业 地理 机器学习 冶金 工程类 考古 材料科学
作者
S. Janifer Jabin Jui,A. A. Masrur Ahmed,Aditi Bose,Nawin Raj,Ekta Sharma,Jeffrey Soar,Md Wasique Islam Chowdhury
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (3): 805-805 被引量:32
标识
DOI:10.3390/rs14030805
摘要

Crop yield forecasting is critical for enhancing food security and ensuring an appropriate food supply. It is critical to complete this activity with high precision at the regional and national levels to facilitate speedy decision-making. Tea is a big cash crop that contributes significantly to economic development, with a market of USD 200 billion in 2020 that is expected to reach over USD 318 billion by 2025. As a developing country, Bangladesh can be a greater part of this industry and increase its exports through its tea yield and production with favorable climatic features and land quality. Regrettably, the tea yield in Bangladesh has not increased significantly since 2008 like many other countries, despite having suitable climatic and land conditions, which is why quantifying the yield is imperative. This study developed a novel spatiotemporal hybrid DRS–RF model with a dragonfly optimization (DR) algorithm and support vector regression (S) as a feature selection approach. This study used satellite-derived hydro-meteorological variables between 1981 and 2020 from twenty stations across Bangladesh to address the spatiotemporal dependency of the predictor variables for the tea yield (Y). The results illustrated that the proposed DRS–RF hybrid model improved tea yield forecasting over other standalone machine learning approaches, with the least relative error value (11%). This study indicates that integrating the random forest model with the dragonfly algorithm and SVR-based feature selection improves prediction performance. This hybrid approach can help combat food risk and management for other countries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麻利点完成签到,获得积分20
1秒前
充电宝应助QDU采纳,获得10
2秒前
香蕉觅云应助zoe采纳,获得10
3秒前
Doik发布了新的文献求助10
3秒前
4秒前
清清完成签到,获得积分10
6秒前
6秒前
ddj完成签到 ,获得积分10
6秒前
Orange应助沉默的谷秋采纳,获得10
6秒前
哈哈哈完成签到,获得积分10
7秒前
子非鱼完成签到,获得积分10
8秒前
ding应助星星采纳,获得10
9秒前
英俊的铭应助龚广山采纳,获得10
10秒前
iwaking完成签到,获得积分10
10秒前
sword完成签到,获得积分10
10秒前
lydy1993完成签到,获得积分10
10秒前
跳跃毒娘发布了新的文献求助10
10秒前
落霞完成签到,获得积分10
11秒前
伶俐剑心完成签到,获得积分10
12秒前
Lojong完成签到,获得积分10
12秒前
实验好难应助古人采纳,获得10
14秒前
云墨完成签到 ,获得积分10
16秒前
飘逸的寄柔完成签到 ,获得积分10
16秒前
John完成签到 ,获得积分10
16秒前
星星完成签到,获得积分10
17秒前
17秒前
闲着也是闲着完成签到 ,获得积分10
17秒前
生动谷蓝完成签到,获得积分10
19秒前
Liuyun发布了新的文献求助10
22秒前
虚幻靖易完成签到,获得积分10
22秒前
荣耀发布了新的文献求助10
24秒前
大鲨鱼完成签到,获得积分20
25秒前
25秒前
26秒前
emmm发布了新的文献求助10
26秒前
在水一方应助Hanguo采纳,获得10
28秒前
跳跃毒娘完成签到,获得积分10
29秒前
JIANYOUFU发布了新的文献求助30
29秒前
29秒前
大鲨鱼发布了新的文献求助10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3747362
求助须知:如何正确求助?哪些是违规求助? 3290018
关于积分的说明 10067957
捐赠科研通 3006152
什么是DOI,文献DOI怎么找? 1650807
邀请新用户注册赠送积分活动 786123
科研通“疑难数据库(出版商)”最低求助积分说明 751452