有限元法
离散化
数学
多边形网格
网格
趋同(经济学)
混合有限元法
非线性系统
应用数学
规则网格
网格生成
接口(物质)
数学分析
扩展有限元法
数学优化
几何学
计算机科学
最大气泡压力法
物理
热力学
气泡
量子力学
经济
并行计算
经济增长
作者
Yanping Chen,Huaming Yi,Yang Wang,Yunqing Huang
标识
DOI:10.1016/j.apnum.2022.02.004
摘要
In this paper, we propose and analyze the two-grid immersed finite element methods for semi-linear parabolic interface problems with discontinuous diffusion coefficients. The immersed finite element methods are used for spatial discretization where the meshes are not aligned with the interface. Optimal error estimates have been derived for both spatially semi-discrete schemes and fully discrete schemes. The two-grid algorithms based on the Newton methods are adopted to treat the nonlinear term. It is theoretically and numerically illustrated that the two-grid immersed finite element methods can achieve optimal convergence order when the coarse mesh satisfies H=O(h1/2) (or H=O(h1/4)).
科研通智能强力驱动
Strongly Powered by AbleSci AI