Highly electric field enhancement induced by anapole modes coupling in the hybrid dielectric–metal nanoantenna

等离子体子 电场 电介质 材料科学 光电子学 近场和远场 领域(数学) 联轴节(管道) 拉曼散射 电磁场 光学 物理 拉曼光谱 量子力学 数学 冶金 纯数学
作者
Jinyong Hu,Wangdi Bai,Chuxuan Tan,Yiming Li,Qi Lin,Lingling Wang
出处
期刊:Optics Communications [Elsevier BV]
卷期号:511: 127987-127987 被引量:13
标识
DOI:10.1016/j.optcom.2022.127987
摘要

Plasmonic nanoantenna has received tremendous attention in various optoelectronic applications owing to their unique optical characteristics with strong localized electric field enhancement. However, the highly intrinsic dissipation losses of metallic nanoantennas limits its application development. Coupling anapole modes of dielectric nanostructure with plasmonic mode of metallic nanoantenna seems to provide a promising alternative to further boost the electric field intensity with low dissipation losses. Herein, we demonstrate that the electric field intensity from a metallic nanoantenna can be remarkably heightened through introducing a dielectric nanostructure to build hybrid dielectric–metal nanoantenna, where the hybrid nanoantenna is composed of a gold nanorod dimer and a slotted silicon nanodisk. Through rationally optimizing the structural parameters, the hybrid nanoantenna exhibits an intensified resonant electric field intensity (> 3700 folds) at the gap of the dimer nanoantenna, which exceeds 30 times higher than that of the individual dimer nanoantenna. The far-field scattering characteristics and the near-field electromagnetic field distributions are systematically investigated to elucidate the field enhancement mechanism via utilizing numerical simulations and multipole decomposition analysis. It can be confirmed that the highly electric field intensity can be primarily attributed to the mode coupling between plasmonic resonances of Au nanoantenna and the radiationless anapole modes supported by the slotted Si nanodisk. The proposed hybrid dielectric–metal nanoantenna can serve as an effective platform to amplify the radiative decay rate and Raman scattering intensity, which paves a prospective avenue in the field of single-molecule surface enhanced spectroscopy . • A hybrid dielectric–metal nanoantenna is proposed to achieve significant enhancement of electric field intensity (> 3700 times). • The highly electric field intensity can be primarily attributed to the mode coupling between the anapole modes and the plasmonic resonances. • The designed nanoantenna can serve as an effective platform for amplifying the radiation decay rate and the Raman scattering intensity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助刘小博采纳,获得10
刚刚
星辰大海应助尊敬的丹烟采纳,获得10
1秒前
1秒前
桐桐应助Dragonfln采纳,获得10
1秒前
2秒前
李鹏关注了科研通微信公众号
2秒前
搜集达人应助wujun采纳,获得10
3秒前
4秒前
冷笑完成签到,获得积分10
5秒前
孤独丹秋完成签到,获得积分10
7秒前
研友_VZG7GZ应助染染采纳,获得10
7秒前
异想天开完成签到,获得积分10
8秒前
8秒前
9秒前
诚心的雁发布了新的文献求助10
9秒前
9秒前
星辰大海应助xinL采纳,获得10
10秒前
10秒前
万能图书馆应助terryok采纳,获得10
10秒前
酷波er应助舒心小海豚采纳,获得10
10秒前
仿生人完成签到,获得积分10
11秒前
酷酷的如天完成签到,获得积分10
11秒前
疏雨发布了新的文献求助10
11秒前
别摆烂了发布了新的文献求助10
13秒前
CHBW发布了新的文献求助10
14秒前
15秒前
17秒前
yyzhou应助科研通管家采纳,获得10
17秒前
Criminology34应助Isla07采纳,获得10
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
在水一方应助科研通管家采纳,获得30
17秒前
CipherSage应助科研通管家采纳,获得10
17秒前
ding应助科研通管家采纳,获得10
17秒前
Owen应助科研通管家采纳,获得10
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
丘比特应助科研通管家采纳,获得10
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4970438
求助须知:如何正确求助?哪些是违规求助? 4227024
关于积分的说明 13165486
捐赠科研通 4014920
什么是DOI,文献DOI怎么找? 2196971
邀请新用户注册赠送积分活动 1209923
关于科研通互助平台的介绍 1124244