Highly electric field enhancement induced by anapole modes coupling in the hybrid dielectric–metal nanoantenna

等离子体子 电场 电介质 材料科学 光电子学 近场和远场 领域(数学) 联轴节(管道) 拉曼散射 电磁场 光学 物理 拉曼光谱 量子力学 数学 冶金 纯数学
作者
Jinyong Hu,Wangdi Bai,Chuxuan Tan,Yiming Li,Qi Lin,Lingling Wang
出处
期刊:Optics Communications [Elsevier BV]
卷期号:511: 127987-127987 被引量:13
标识
DOI:10.1016/j.optcom.2022.127987
摘要

Plasmonic nanoantenna has received tremendous attention in various optoelectronic applications owing to their unique optical characteristics with strong localized electric field enhancement. However, the highly intrinsic dissipation losses of metallic nanoantennas limits its application development. Coupling anapole modes of dielectric nanostructure with plasmonic mode of metallic nanoantenna seems to provide a promising alternative to further boost the electric field intensity with low dissipation losses. Herein, we demonstrate that the electric field intensity from a metallic nanoantenna can be remarkably heightened through introducing a dielectric nanostructure to build hybrid dielectric–metal nanoantenna, where the hybrid nanoantenna is composed of a gold nanorod dimer and a slotted silicon nanodisk. Through rationally optimizing the structural parameters, the hybrid nanoantenna exhibits an intensified resonant electric field intensity (> 3700 folds) at the gap of the dimer nanoantenna, which exceeds 30 times higher than that of the individual dimer nanoantenna. The far-field scattering characteristics and the near-field electromagnetic field distributions are systematically investigated to elucidate the field enhancement mechanism via utilizing numerical simulations and multipole decomposition analysis. It can be confirmed that the highly electric field intensity can be primarily attributed to the mode coupling between plasmonic resonances of Au nanoantenna and the radiationless anapole modes supported by the slotted Si nanodisk. The proposed hybrid dielectric–metal nanoantenna can serve as an effective platform to amplify the radiative decay rate and Raman scattering intensity, which paves a prospective avenue in the field of single-molecule surface enhanced spectroscopy . • A hybrid dielectric–metal nanoantenna is proposed to achieve significant enhancement of electric field intensity (> 3700 times). • The highly electric field intensity can be primarily attributed to the mode coupling between the anapole modes and the plasmonic resonances. • The designed nanoantenna can serve as an effective platform for amplifying the radiation decay rate and the Raman scattering intensity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cheryjay发布了新的文献求助10
刚刚
NexusExplorer应助小张同学采纳,获得10
1秒前
王欣发布了新的文献求助10
1秒前
林岚发布了新的文献求助10
1秒前
小蘑菇应助神勇路人采纳,获得10
2秒前
冷酷夏真完成签到 ,获得积分10
3秒前
kyle竣完成签到,获得积分10
3秒前
wzy完成签到 ,获得积分10
3秒前
4秒前
充电宝应助cheryjay采纳,获得10
4秒前
sooyaaa发布了新的文献求助10
4秒前
木子水告完成签到,获得积分10
5秒前
5秒前
崔崔发布了新的文献求助10
6秒前
李健应助停停停采纳,获得10
8秒前
yhw完成签到,获得积分10
9秒前
大胆的芸遥完成签到,获得积分10
9秒前
小马甲应助jihe采纳,获得10
9秒前
10秒前
量子星尘发布了新的文献求助150
10秒前
10秒前
小羊完成签到,获得积分10
11秒前
11秒前
11秒前
郝宇发布了新的文献求助10
11秒前
科目三应助yibo采纳,获得30
12秒前
复杂的蛋挞完成签到 ,获得积分10
12秒前
13秒前
14秒前
啊哈哈哈哈哈完成签到 ,获得积分10
14秒前
14秒前
JamesPei应助花花采纳,获得10
14秒前
充电宝应助光亮的绮晴采纳,获得10
15秒前
sooyaaa完成签到,获得积分10
16秒前
杨仲文发布了新的文献求助10
16秒前
Silone发布了新的文献求助10
16秒前
深情安青应助老实的玉米采纳,获得10
16秒前
凡凡的凡凡应助Kate采纳,获得10
16秒前
17秒前
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132616
求助须知:如何正确求助?哪些是违规求助? 4333988
关于积分的说明 13502721
捐赠科研通 4171020
什么是DOI,文献DOI怎么找? 2286820
邀请新用户注册赠送积分活动 1287691
关于科研通互助平台的介绍 1228590