Predicting Treatment Response in Schizophrenia With Magnetic Resonance Imaging and Polygenic Risk Score

多基因风险评分 功能磁共振成像 精神分裂症(面向对象编程) 磁共振成像 维加维斯 弗雷明翰风险评分 医学 内科学 心理学 生物 神经科学 精神科 遗传学 放射科 基因 单核苷酸多态性 基因型 疾病
作者
Meng Wang,Ke Hu,Lingzhong Fan,Hao Yan,Peng Li,Tianzi Jiang,Bing Liu
出处
期刊:Frontiers in Genetics [Frontiers Media SA]
卷期号:13 被引量:20
标识
DOI:10.3389/fgene.2022.848205
摘要

Background: Prior studies have separately demonstrated that magnetic resonance imaging (MRI) and schizophrenia polygenic risk score (PRS) are predictive of antipsychotic medication treatment outcomes in schizophrenia. However, it remains unclear whether MRI combined with PRS can provide superior prognostic performance. Besides, the relative importance of these measures in predictions is not investigated. Methods: We collected 57 patients with schizophrenia, all of which had baseline MRI and genotype data. All these patients received approximately 6 weeks of antipsychotic medication treatment. Psychotic symptom severity was assessed using the Positive and Negative Syndrome Scale (PANSS) at baseline and follow-up. We divided these patients into responders ( N = 20) or non-responders ( N = 37) based on whether their percentages of PANSS total reduction were above or below 50%. Nine categories of MRI measures and PRSs with 145 different p -value thresholding ranges were calculated. We trained machine learning classifiers with these baseline predictors to identify whether a patient was a responder or non-responder. Results: The extreme gradient boosting (XGBoost) technique was applied to build binary classifiers. Using a leave-one-out cross-validation scheme, we achieved an accuracy of 86% with all MRI and PRS features. Other metrics were also estimated, including sensitivity (85%), specificity (86%), F1-score (81%), and area under the receiver operating characteristic curve (0.86). We found excluding a single feature category of gray matter volume (GMV), amplitude of low-frequency fluctuation (ALFF), and surface curvature could lead to a maximum accuracy drop of 10.5%. These three categories contributed more than half of the top 10 important features. Besides, removing PRS features caused a modest accuracy drop (8.8%), which was not the least decrease (1.8%) among all feature categories. Conclusions: Our classifier using both MRI and PRS features was stable and not biased to predicting either responder or non-responder. Combining with MRI measures, PRS could provide certain extra predictive power of antipsychotic medication treatment outcomes in schizophrenia. PRS exhibited medium importance in predictions, lower than GMV, ALFF, and surface curvature, but higher than measures of cortical thickness, cortical volume, and surface sulcal depth. Our findings inform the contributions of PRS in predictions of treatment outcomes in schizophrenia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮海云完成签到,获得积分10
刚刚
喜金少女发布了新的文献求助10
刚刚
大书发布了新的文献求助10
刚刚
2秒前
小申发布了新的文献求助10
2秒前
2秒前
所所应助vv采纳,获得10
3秒前
搜集达人应助wkkkkkk采纳,获得30
3秒前
清雨潇璇发布了新的文献求助10
3秒前
4秒前
傲娇石头应助十一采纳,获得10
5秒前
wanci应助小天添采纳,获得10
5秒前
SciGPT应助王明磊采纳,获得10
5秒前
thegreattom发布了新的文献求助10
5秒前
6秒前
6秒前
Ruichen.Wang应助wangdong采纳,获得10
7秒前
7秒前
7秒前
光亮海云发布了新的文献求助10
7秒前
9秒前
9秒前
阿旭完成签到 ,获得积分10
10秒前
11秒前
josiko完成签到,获得积分10
11秒前
11秒前
BLDYT完成签到,获得积分10
12秒前
13秒前
文章多多完成签到 ,获得积分10
14秒前
xiuxiuxiuxiu发布了新的文献求助10
14秒前
无私啤酒完成签到,获得积分10
15秒前
谷粱灵薇发布了新的文献求助10
15秒前
16秒前
zsy发布了新的文献求助10
17秒前
有魅力荟发布了新的文献求助10
17秒前
黄少天完成签到,获得积分10
18秒前
是江江哥啊完成签到,获得积分10
19秒前
虚心的冷雪完成签到,获得积分10
19秒前
19秒前
20秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
SAS, Python and R: A Cross-Reference Guide for Data Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3386079
求助须知:如何正确求助?哪些是违规求助? 2999350
关于积分的说明 8784773
捐赠科研通 2685079
什么是DOI,文献DOI怎么找? 1470830
科研通“疑难数据库(出版商)”最低求助积分说明 679976
邀请新用户注册赠送积分活动 672485