Learning Based Channel Allocation and Task Offloading in Temporary UAV-Assisted Vehicular Edge Computing Networks

计算机科学 边缘计算 强化学习 计算机网络 分布式计算 时分多址 频道(广播) 节点(物理) GSM演进的增强数据速率 任务(项目管理) 信道分配方案 传输(电信) 移动边缘计算 实时计算 无线 服务器 工程类 人工智能 电信 结构工程 系统工程
作者
Chao Yang,Baichuan Liu,Haoyu Li,Bo Li,Kan Xie,Shengli Xie
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:71 (9): 9884-9895 被引量:42
标识
DOI:10.1109/tvt.2022.3177664
摘要

High-level autonomous decision making system is one of the key technologies in intelligent transportation networks, it requires the traffic information within a certain range of vehicles in real time. When the traffic roads become congested or the roadside units (RSUs) are unaccessed beyond the communication range, the unmanned aerial vehicle (UAV)-assisted vehicular edge computing network (VECN) is considered as a potential solution. In this paper, we propose a learning based channel allocation and task offloading strategy in temporary UAV-assisted VECNs from a user perspective, in which the UAV passing temporarily can serve as the relay and edge computing node to support the decision making system. However, the limited available computation resources and time-varying communication channel states make it critical to process the received computing tasks. To address the above mentioned challenges, we design an efficient data transmission strategy combined the long-term evolution vehicle-to-everything (LTE-V2X) and time-division multiple access (TDMA) technologies firstly, then, we propose a multi-option task processing scheme, a service cost minimization problem is proposed where the integral decisions of channel allocation and task processing mode selection are jointly optimized. Under dynamic computing resources and the current data transmission conditions, the UAV selects an optimal task processing service model based on deep reinforcement learning (DRL) algorithm. Simulation results show the proposed strategy greatly improves the data transmission efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿嘿发布了新的文献求助10
1秒前
1秒前
1秒前
研友_VZG7GZ应助Hyy采纳,获得10
2秒前
一杯半茶发布了新的文献求助10
2秒前
2秒前
科目三应助科研通管家采纳,获得10
3秒前
雨中小王应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得30
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
侯总应助科研通管家采纳,获得10
3秒前
4秒前
愉快南琴发布了新的文献求助10
4秒前
李健应助清爽的芷蕾采纳,获得10
5秒前
5秒前
6秒前
吴林丹发布了新的文献求助10
7秒前
123321完成签到,获得积分20
7秒前
邓佳鑫Alan应助17853723535采纳,获得10
8秒前
果果发布了新的文献求助10
8秒前
汉堡包应助wuqi采纳,获得10
9秒前
maolin发布了新的文献求助10
9秒前
10秒前
11秒前
江海小舟发布了新的文献求助10
11秒前
stephen完成签到,获得积分10
12秒前
桐桐应助耍酷问兰采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594267
求助须知:如何正确求助?哪些是违规求助? 4679962
关于积分的说明 14812493
捐赠科研通 4646674
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502831
关于科研通互助平台的介绍 1469497