已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Learning Based Channel Allocation and Task Offloading in Temporary UAV-Assisted Vehicular Edge Computing Networks

计算机科学 边缘计算 强化学习 计算机网络 分布式计算 时分多址 频道(广播) 节点(物理) GSM演进的增强数据速率 任务(项目管理) 信道分配方案 传输(电信) 移动边缘计算 实时计算 无线 服务器 工程类 人工智能 电信 结构工程 系统工程
作者
Chao Yang,Baichuan Liu,Haoyu Li,Bo Li,Kan Xie,Shengli Xie
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:71 (9): 9884-9895 被引量:42
标识
DOI:10.1109/tvt.2022.3177664
摘要

High-level autonomous decision making system is one of the key technologies in intelligent transportation networks, it requires the traffic information within a certain range of vehicles in real time. When the traffic roads become congested or the roadside units (RSUs) are unaccessed beyond the communication range, the unmanned aerial vehicle (UAV)-assisted vehicular edge computing network (VECN) is considered as a potential solution. In this paper, we propose a learning based channel allocation and task offloading strategy in temporary UAV-assisted VECNs from a user perspective, in which the UAV passing temporarily can serve as the relay and edge computing node to support the decision making system. However, the limited available computation resources and time-varying communication channel states make it critical to process the received computing tasks. To address the above mentioned challenges, we design an efficient data transmission strategy combined the long-term evolution vehicle-to-everything (LTE-V2X) and time-division multiple access (TDMA) technologies firstly, then, we propose a multi-option task processing scheme, a service cost minimization problem is proposed where the integral decisions of channel allocation and task processing mode selection are jointly optimized. Under dynamic computing resources and the current data transmission conditions, the UAV selects an optimal task processing service model based on deep reinforcement learning (DRL) algorithm. Simulation results show the proposed strategy greatly improves the data transmission efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
梦梦关注了科研通微信公众号
4秒前
小橘子吃傻子完成签到,获得积分10
5秒前
斯文败类应助liwen采纳,获得10
7秒前
8秒前
6666应助佛光辉采纳,获得10
8秒前
李健的小迷弟应助任无施采纳,获得10
10秒前
10秒前
桐桐应助海大彭于晏采纳,获得10
11秒前
少年锦时完成签到,获得积分10
11秒前
白泽发布了新的文献求助10
14秒前
14秒前
lili发布了新的文献求助10
15秒前
15秒前
EternalStrider完成签到,获得积分10
17秒前
梦梦发布了新的文献求助10
18秒前
cmf完成签到 ,获得积分10
22秒前
23秒前
Criminology34应助伊力扎提采纳,获得10
23秒前
25秒前
xiaoguoxiaoguo完成签到,获得积分10
27秒前
科研通AI6应助inRe采纳,获得30
27秒前
lululemontree发布了新的文献求助10
27秒前
29秒前
英姑应助开放的千青采纳,获得10
29秒前
白泽完成签到,获得积分10
34秒前
cenghao给cenghao的求助进行了留言
35秒前
36秒前
lili完成签到,获得积分10
38秒前
40秒前
qing_li完成签到,获得积分10
41秒前
41秒前
miaomiao123完成签到 ,获得积分10
42秒前
liwen发布了新的文献求助10
43秒前
勤劳凌青发布了新的文献求助20
43秒前
小蛇玩完成签到,获得积分10
43秒前
小二郎应助佛光辉采纳,获得10
44秒前
45秒前
45秒前
科研通AI6应助111采纳,获得10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627761
求助须知:如何正确求助?哪些是违规求助? 4714630
关于积分的说明 14963076
捐赠科研通 4785511
什么是DOI,文献DOI怎么找? 2555141
邀请新用户注册赠送积分活动 1516488
关于科研通互助平台的介绍 1476910