TG-Net: Combining transformer and GAN for nasopharyngeal carcinoma tumor segmentation based on total-body uEXPLORER PET/CT scanner

分割 计算机科学 人工智能 鼻咽癌 模式识别(心理学) 深度学习 参数统计 图像分割 放射治疗 放射科 医学 数学 统计
作者
Zhengyong Huang,Si Tang,Zixiang Chen,Guoshuai Wang,Hao Shen,Yun Zhou,Haining Wang,Wei Fan,Dong Liang,Yingying Hu,Zhanli Hu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:148: 105869-105869 被引量:14
标识
DOI:10.1016/j.compbiomed.2022.105869
摘要

Nasopharyngeal carcinoma (NPC) is a malignant tumor, and the main treatment is radiotherapy. Accurate delineation of the target tumor is essential for radiotherapy of NPC. NPC tumors are small in size and vary widely in shape and structure, making it a time-consuming and laborious task for even experienced radiologists to manually outline tumors. However, the segmentation performance of current deep learning models is not satisfactory, mainly manifested by poor segmentation boundaries. To solve this problem, this paper proposes a segmentation method for nasopharyngeal carcinoma based on dynamic PET-CT image data, whose input data include CT, PET, and parametric images (Ki images). This method uses a generative adversarial network with a modified UNet integrated with a Transformer as the generator (TG-Net) to achieve automatic segmentation of NPC on combined CT-PET-Ki images. In the coding stage, TG-Net uses moving windows to replace traditional pooling operations to obtain patches of different sizes, which can reduce information loss in the coding process. Moreover, the introduction of Transformer can make the network learn more representative features and improve the discriminant ability of the model, especially for tumor boundaries. Finally, the results of fivefold cross validation with an average Dice similarity coefficient score of 0.9135 show that our method has good segmentation performance. Comparative experiments also show that our network structure is superior to the most advanced methods in the segmentation of NPC. In addition, this work is the first to use Ki images to assist tumor segmentation. We also demonstrated the usefulness of adding Ki images to aid in tumor segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不安栾完成签到,获得积分10
刚刚
寒生完成签到,获得积分10
刚刚
1秒前
肖珂发布了新的文献求助10
1秒前
刘林美发布了新的文献求助10
3秒前
zz完成签到,获得积分10
3秒前
susu完成签到,获得积分10
5秒前
香蕉觅云应助嘞是举仔采纳,获得10
5秒前
7秒前
木子木子吱吱完成签到,获得积分10
7秒前
susu发布了新的文献求助30
8秒前
蔡忠英发布了新的文献求助10
9秒前
迷路访云完成签到,获得积分10
9秒前
10秒前
11秒前
BetterH完成签到 ,获得积分10
11秒前
无花果应助wow采纳,获得10
11秒前
wanci应助7iy采纳,获得10
12秒前
loong发布了新的文献求助10
16秒前
深情安青应助白桦林泪采纳,获得10
16秒前
18秒前
米米米完成签到 ,获得积分10
20秒前
JX完成签到 ,获得积分10
21秒前
22秒前
22秒前
锅包肉完成签到 ,获得积分10
22秒前
华仔应助loong采纳,获得10
23秒前
wow发布了新的文献求助10
24秒前
包容的鞋垫完成签到,获得积分10
25秒前
bkagyin应助congenialboy采纳,获得10
25秒前
搜集达人应助刘林美采纳,获得10
26秒前
张瑞雪完成签到 ,获得积分10
26秒前
hanshu发布了新的文献求助10
27秒前
29秒前
wow完成签到,获得积分10
30秒前
31秒前
牢孙完成签到,获得积分10
34秒前
嘞是举仔发布了新的文献求助10
35秒前
蔡忠英完成签到,获得积分10
36秒前
酷波er应助风车采纳,获得10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989711
求助须知:如何正确求助?哪些是违规求助? 3531864
关于积分的说明 11255235
捐赠科研通 3270505
什么是DOI,文献DOI怎么找? 1804983
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809176