TG-Net: Combining transformer and GAN for nasopharyngeal carcinoma tumor segmentation based on total-body uEXPLORER PET/CT scanner

分割 计算机科学 人工智能 鼻咽癌 模式识别(心理学) 深度学习 参数统计 图像分割 放射治疗 放射科 医学 数学 统计
作者
Zhengyong Huang,Si Tang,Zixiang Chen,Guoshuai Wang,Hao Shen,Yun Zhou,Haining Wang,Wei Fan,Dong Liang,Yingying Hu,Zhanli Hu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:148: 105869-105869 被引量:14
标识
DOI:10.1016/j.compbiomed.2022.105869
摘要

Nasopharyngeal carcinoma (NPC) is a malignant tumor, and the main treatment is radiotherapy. Accurate delineation of the target tumor is essential for radiotherapy of NPC. NPC tumors are small in size and vary widely in shape and structure, making it a time-consuming and laborious task for even experienced radiologists to manually outline tumors. However, the segmentation performance of current deep learning models is not satisfactory, mainly manifested by poor segmentation boundaries. To solve this problem, this paper proposes a segmentation method for nasopharyngeal carcinoma based on dynamic PET-CT image data, whose input data include CT, PET, and parametric images (Ki images). This method uses a generative adversarial network with a modified UNet integrated with a Transformer as the generator (TG-Net) to achieve automatic segmentation of NPC on combined CT-PET-Ki images. In the coding stage, TG-Net uses moving windows to replace traditional pooling operations to obtain patches of different sizes, which can reduce information loss in the coding process. Moreover, the introduction of Transformer can make the network learn more representative features and improve the discriminant ability of the model, especially for tumor boundaries. Finally, the results of fivefold cross validation with an average Dice similarity coefficient score of 0.9135 show that our method has good segmentation performance. Comparative experiments also show that our network structure is superior to the most advanced methods in the segmentation of NPC. In addition, this work is the first to use Ki images to assist tumor segmentation. We also demonstrated the usefulness of adding Ki images to aid in tumor segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
随便起个名完成签到,获得积分10
1秒前
HH完成签到,获得积分10
1秒前
chris完成签到,获得积分10
1秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得150
2秒前
FashionBoy应助科研通管家采纳,获得30
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得150
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
美丽人生完成签到 ,获得积分10
3秒前
雨后完成签到 ,获得积分10
5秒前
Augenstern完成签到,获得积分10
5秒前
溆玉碎兰笑完成签到 ,获得积分10
7秒前
李大胖胖完成签到 ,获得积分10
7秒前
Edou完成签到 ,获得积分10
7秒前
2275523154完成签到,获得积分10
8秒前
豆浆来点蒜泥完成签到,获得积分10
9秒前
简单完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助150
12秒前
nan完成签到,获得积分10
12秒前
Hh完成签到,获得积分10
14秒前
sun完成签到,获得积分10
18秒前
完美世界应助plateauman采纳,获得10
18秒前
嘟嘟豆806完成签到 ,获得积分10
18秒前
freeway完成签到,获得积分10
19秒前
辛勤谷雪完成签到,获得积分10
21秒前
清脆的秋寒完成签到,获得积分10
21秒前
傅家庆完成签到 ,获得积分10
21秒前
yziy完成签到 ,获得积分10
22秒前
现代大神完成签到,获得积分10
27秒前
zy完成签到 ,获得积分10
27秒前
komorebi完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
小龙完成签到 ,获得积分10
32秒前
34秒前
36秒前
aaaa完成签到 ,获得积分10
36秒前
梅特卡夫完成签到,获得积分10
39秒前
初见完成签到 ,获得积分10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5093339
求助须知:如何正确求助?哪些是违规求助? 4306976
关于积分的说明 13417433
捐赠科研通 4133171
什么是DOI,文献DOI怎么找? 2264356
邀请新用户注册赠送积分活动 1268004
关于科研通互助平台的介绍 1203813