TG-Net: Combining transformer and GAN for nasopharyngeal carcinoma tumor segmentation based on total-body uEXPLORER PET/CT scanner

分割 计算机科学 人工智能 鼻咽癌 模式识别(心理学) 深度学习 参数统计 图像分割 放射治疗 放射科 医学 数学 统计
作者
Zhengyong Huang,Si Tang,Zixiang Chen,Guoshuai Wang,Hao Shen,Yun Zhou,Haining Wang,Wei Fan,Dong Liang,Yingying Hu,Zhanli Hu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:148: 105869-105869 被引量:14
标识
DOI:10.1016/j.compbiomed.2022.105869
摘要

Nasopharyngeal carcinoma (NPC) is a malignant tumor, and the main treatment is radiotherapy. Accurate delineation of the target tumor is essential for radiotherapy of NPC. NPC tumors are small in size and vary widely in shape and structure, making it a time-consuming and laborious task for even experienced radiologists to manually outline tumors. However, the segmentation performance of current deep learning models is not satisfactory, mainly manifested by poor segmentation boundaries. To solve this problem, this paper proposes a segmentation method for nasopharyngeal carcinoma based on dynamic PET-CT image data, whose input data include CT, PET, and parametric images (Ki images). This method uses a generative adversarial network with a modified UNet integrated with a Transformer as the generator (TG-Net) to achieve automatic segmentation of NPC on combined CT-PET-Ki images. In the coding stage, TG-Net uses moving windows to replace traditional pooling operations to obtain patches of different sizes, which can reduce information loss in the coding process. Moreover, the introduction of Transformer can make the network learn more representative features and improve the discriminant ability of the model, especially for tumor boundaries. Finally, the results of fivefold cross validation with an average Dice similarity coefficient score of 0.9135 show that our method has good segmentation performance. Comparative experiments also show that our network structure is superior to the most advanced methods in the segmentation of NPC. In addition, this work is the first to use Ki images to assist tumor segmentation. We also demonstrated the usefulness of adding Ki images to aid in tumor segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luna完成签到,获得积分10
1秒前
1秒前
个性的笑萍完成签到,获得积分10
3秒前
小柯发布了新的文献求助10
4秒前
lalala发布了新的文献求助10
4秒前
思源应助啦啦采纳,获得10
4秒前
整齐的蜻蜓给整齐的蜻蜓的求助进行了留言
4秒前
5秒前
小文殊完成签到 ,获得积分10
5秒前
8秒前
9秒前
TaDLove完成签到,获得积分10
10秒前
尹天扬完成签到,获得积分10
11秒前
12秒前
李健的小迷弟应助Cherry采纳,获得10
12秒前
科目三应助mashichuang采纳,获得10
13秒前
亚当发布了新的文献求助10
15秒前
Diamond完成签到 ,获得积分10
15秒前
16秒前
18秒前
20秒前
21秒前
SciGPT应助科研通管家采纳,获得10
21秒前
情怀应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
22秒前
lalala发布了新的文献求助10
23秒前
五十一完成签到 ,获得积分10
24秒前
CurryFan完成签到 ,获得积分10
25秒前
mashichuang发布了新的文献求助10
25秒前
啦啦发布了新的文献求助10
26秒前
沉默的婴完成签到 ,获得积分10
27秒前
进退须臾完成签到,获得积分10
30秒前
酷波er应助小胡采纳,获得10
31秒前
我是老大应助erfvtyuh采纳,获得10
31秒前
搜集达人应助mashichuang采纳,获得10
31秒前
33秒前
34秒前
35秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147949
求助须知:如何正确求助?哪些是违规求助? 2798959
关于积分的说明 7832858
捐赠科研通 2456063
什么是DOI,文献DOI怎么找? 1307104
科研通“疑难数据库(出版商)”最低求助积分说明 628062
版权声明 601620