Network Technology, Whole-Process Performance, and Variable-Specific Decomposition Analysis: Solutions for Energy-Economy-Environment Nexus

持续性 效率低下 背景(考古学) 过程(计算) 环境经济学 生产(经济) Nexus(标准) 工业生态学 第二经济部门 生产力 工业生产 高效能源利用 计算机科学 环境资源管理 工程类 环境科学 经济 经济 生态学 嵌入式系统 生物 操作系统 古生物学 宏观经济学 电气工程 微观经济学 凯恩斯经济学
作者
Zhuang Miao,Anda Guo,Xiaodong Chen,Pengyu Zhu
出处
期刊:IEEE Transactions on Engineering Management [Institute of Electrical and Electronics Engineers]
卷期号:71: 2184-2201 被引量:21
标识
DOI:10.1109/tem.2022.3165146
摘要

The sustainability of the industrial sector is often evaluated in a one-stage process. On the other hand, industrial activities are characterized by complex and multistage natures, which creates challenges for industrial performance assessment. Properly measuring industrial sustainability and understanding the driving factors (e.g., energy use or labor) of whole-process industrial operation is important for sustainable industrial sector management. To address these difficulties, we propose two new frameworks: the network variable-specific bounded-adjusted measure and network variable-specific Luenberger productivity indicators decomposition. These both take into account the whole-process context and network nature of industrial production, and unpack and quantify the contributions of specific components of the industrial process affecting sustainability. In order to capture both the status and evolution of sustainability performance, two indices are constructed. These are then decomposed to investigate the contribution of particular components to overall sustainability. The proposed approach is applied to analyze the sustainability of the industrial sector in 30 of China's provincial administrative regions between 2006 and 2015. The static sustainability inefficiency indicator results indicate that in the production and treatment process, use of the most efficient existing technology would allow a further 48.0% and 23.6% of pollutant emissions to be reduced and treated, respectively. In the production process, the most efficient technology could produce a 10.7% improvement in energy conservation. The average annual dynamic environmental performance was 2.45% and 2.07% for the production and treatment processes, respectively. There is significant heterogeneity between regions and for different variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YAOYAO发布了新的文献求助10
刚刚
舒适豌豆完成签到,获得积分10
刚刚
Amber应助reck采纳,获得10
刚刚
Renhong完成签到,获得积分10
1秒前
2秒前
桐桐应助咕噜仔采纳,获得10
2秒前
季宇完成签到,获得积分10
3秒前
3秒前
科研通AI2S应助大脸妹采纳,获得10
3秒前
AA发布了新的文献求助10
4秒前
4秒前
4秒前
小二郎应助小喵采纳,获得10
5秒前
5秒前
stt发布了新的文献求助10
5秒前
6秒前
Oak完成签到 ,获得积分10
6秒前
6秒前
lyy完成签到 ,获得积分10
6秒前
7秒前
Anne应助fancy采纳,获得10
7秒前
7秒前
研友_汪老头完成签到,获得积分10
7秒前
雪花君完成签到,获得积分10
8秒前
派大星发布了新的文献求助10
8秒前
科研通AI5应助hzauchen采纳,获得10
8秒前
八九完成签到,获得积分10
9秒前
快乐小白菜应助圈圈采纳,获得10
9秒前
10秒前
冷艳后妈发布了新的文献求助10
10秒前
蒋念寒发布了新的文献求助10
10秒前
36456657应助CC采纳,获得10
10秒前
猪猪猪发布了新的文献求助10
10秒前
10秒前
scxl2000完成签到,获得积分10
11秒前
11秒前
oyc完成签到,获得积分10
11秒前
11秒前
11秒前
Leexxxhaoo发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678