Joint Routing and Scheduling Optimization in Time-Sensitive Networks Using Graph-Convolutional-Network-Based Deep Reinforcement Learning

计算机科学 强化学习 时间复杂性 调度(生产过程) 最优化问题 回程(电信) 人工智能 计算机网络 数学优化 算法 基站 数学
作者
Yang Liu,Yifei Wei,F. Richard Yu,Zhu Han
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (23): 23981-23994 被引量:71
标识
DOI:10.1109/jiot.2022.3188826
摘要

The growing number of Internet of Things (IoT) devices brings enormous time-sensitive applications, which require real-time transmission to effectuate communication services. The ultrareliable and low-latency communication (URLLC) scenario in the fifth generation (5G) has played a critical role in supporting services with delay-sensitive properties. Time-sensitive networking (TSN) has been widely considered as a promising paradigm for enabling the deterministic transmission guarantees for 5G. However, TSN is a hybrid traffic system with time-sensitive traffic and best effort traffic, which require effective routing and scheduling to provide a deterministic and bounded delay. While joint optimization of time-sensitive and non-time-sensitive traffic greatly increases the solution space and brings a significant challenge to obtain solutions. Therefore, this article proposes a graph convolutional network-based deep reinforcement learning (GCN-based DRL) solution for the joint optimization problem in practical communication scenarios. The GCN is integrated into deep reinforcement learning (DRL) to obtain the network's spatial dependence and elevate the generalization performance of the proposed method. Specifically, the GCN adopts the first-order Chebyshev polynomial to approximate the graph convolution kernel, which reduces the complexity of the algorithm and improves the feasibility for the joint optimization task. Furthermore, priority experience replay is employed to accelerate the convergence speed of the model training process. Numerical simulations demonstrate that the proposed GCN-based DRL algorithm has good convergence and outperforms the benchmark methods in terms of the average end-to-end delay.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱华彪完成签到,获得积分10
1秒前
无奈冥完成签到,获得积分10
1秒前
3秒前
安详晓亦发布了新的文献求助10
3秒前
科目三应助scc采纳,获得10
4秒前
4秒前
5秒前
hongw_liu完成签到,获得积分10
5秒前
Northtime完成签到,获得积分10
5秒前
6秒前
6秒前
star009完成签到,获得积分10
6秒前
Jasper应助JQ采纳,获得10
6秒前
在水一方应助遇见采纳,获得20
7秒前
糯糯完成签到,获得积分10
7秒前
细胞不凋王女士完成签到,获得积分10
7秒前
尊敬冬萱完成签到 ,获得积分10
8秒前
8秒前
诚心寄凡完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
朴素傲松完成签到,获得积分20
9秒前
10秒前
浮游应助wangzhiqin采纳,获得10
10秒前
yan123发布了新的文献求助10
10秒前
小胡完成签到,获得积分10
10秒前
yan发布了新的文献求助10
10秒前
10秒前
10秒前
hehsk发布了新的文献求助10
10秒前
清爽忆山发布了新的文献求助10
11秒前
酷酷的麦片完成签到 ,获得积分10
11秒前
席松发布了新的文献求助10
12秒前
双shuang完成签到,获得积分10
12秒前
kll完成签到,获得积分10
12秒前
一一应助小李采纳,获得10
12秒前
左丘冬寒完成签到,获得积分10
13秒前
田様应助hh采纳,获得10
13秒前
阿啾啾发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545721
求助须知:如何正确求助?哪些是违规求助? 4631761
关于积分的说明 14622099
捐赠科研通 4573427
什么是DOI,文献DOI怎么找? 2507524
邀请新用户注册赠送积分活动 1484223
关于科研通互助平台的介绍 1455530