亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Joint Routing and Scheduling Optimization in Time-Sensitive Networks Using Graph-Convolutional-Network-Based Deep Reinforcement Learning

计算机科学 强化学习 时间复杂性 调度(生产过程) 最优化问题 回程(电信) 人工智能 计算机网络 数学优化 算法 基站 数学
作者
Yang Liu,Yifei Wei,F. Richard Yu,Zhu Han
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (23): 23981-23994 被引量:39
标识
DOI:10.1109/jiot.2022.3188826
摘要

The growing number of Internet of Things (IoT) devices brings enormous time-sensitive applications, which require real-time transmission to effectuate communication services. The ultrareliable and low-latency communication (URLLC) scenario in the fifth generation (5G) has played a critical role in supporting services with delay-sensitive properties. Time-sensitive networking (TSN) has been widely considered as a promising paradigm for enabling the deterministic transmission guarantees for 5G. However, TSN is a hybrid traffic system with time-sensitive traffic and best effort traffic, which require effective routing and scheduling to provide a deterministic and bounded delay. While joint optimization of time-sensitive and non-time-sensitive traffic greatly increases the solution space and brings a significant challenge to obtain solutions. Therefore, this article proposes a graph convolutional network-based deep reinforcement learning (GCN-based DRL) solution for the joint optimization problem in practical communication scenarios. The GCN is integrated into deep reinforcement learning (DRL) to obtain the network's spatial dependence and elevate the generalization performance of the proposed method. Specifically, the GCN adopts the first-order Chebyshev polynomial to approximate the graph convolution kernel, which reduces the complexity of the algorithm and improves the feasibility for the joint optimization task. Furthermore, priority experience replay is employed to accelerate the convergence speed of the model training process. Numerical simulations demonstrate that the proposed GCN-based DRL algorithm has good convergence and outperforms the benchmark methods in terms of the average end-to-end delay.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懒洋洋完成签到,获得积分10
10秒前
飞快的一凤完成签到,获得积分20
11秒前
14秒前
量子星尘发布了新的文献求助10
16秒前
manson完成签到,获得积分10
18秒前
伶俐的悒发布了新的文献求助10
19秒前
伶俐的悒完成签到,获得积分10
35秒前
manson发布了新的文献求助10
35秒前
紧张的惜寒完成签到,获得积分10
37秒前
冷HorToo完成签到 ,获得积分10
37秒前
在水一方应助guolong采纳,获得10
48秒前
喬老師完成签到,获得积分10
48秒前
49秒前
研友_59AB85发布了新的文献求助10
56秒前
番茄黄瓜芝士片完成签到 ,获得积分10
58秒前
宣灵薇完成签到,获得积分0
1分钟前
在水一方应助研友_59AB85采纳,获得10
1分钟前
研友_59AB85完成签到,获得积分10
1分钟前
hanatae完成签到,获得积分10
1分钟前
1分钟前
云木完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Yina完成签到 ,获得积分10
1分钟前
lcw完成签到 ,获得积分10
1分钟前
Sandy应助科研通管家采纳,获得20
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
cc应助科研通管家采纳,获得20
1分钟前
IfItheonlyone完成签到 ,获得积分10
2分钟前
沙脑完成签到 ,获得积分10
2分钟前
皮尔特桃仔完成签到,获得积分10
2分钟前
clhoxvpze完成签到 ,获得积分10
2分钟前
努力搞科研完成签到,获得积分10
2分钟前
2分钟前
研友_ZGRvon完成签到,获得积分0
2分钟前
Nuyoah发布了新的文献求助10
2分钟前
2分钟前
2分钟前
菜根谭完成签到 ,获得积分10
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960007
求助须知:如何正确求助?哪些是违规求助? 3506216
关于积分的说明 11128438
捐赠科研通 3238221
什么是DOI,文献DOI怎么找? 1789577
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056