Joint Routing and Scheduling Optimization in Time-Sensitive Networks Using Graph-Convolutional-Network-Based Deep Reinforcement Learning

计算机科学 强化学习 时间复杂性 调度(生产过程) 最优化问题 回程(电信) 人工智能 计算机网络 数学优化 算法 基站 数学
作者
Yang Liu,Yifei Wei,F. Richard Yu,Zhu Han
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (23): 23981-23994 被引量:39
标识
DOI:10.1109/jiot.2022.3188826
摘要

The growing number of Internet of Things (IoT) devices brings enormous time-sensitive applications, which require real-time transmission to effectuate communication services. The ultrareliable and low-latency communication (URLLC) scenario in the fifth generation (5G) has played a critical role in supporting services with delay-sensitive properties. Time-sensitive networking (TSN) has been widely considered as a promising paradigm for enabling the deterministic transmission guarantees for 5G. However, TSN is a hybrid traffic system with time-sensitive traffic and best effort traffic, which require effective routing and scheduling to provide a deterministic and bounded delay. While joint optimization of time-sensitive and non-time-sensitive traffic greatly increases the solution space and brings a significant challenge to obtain solutions. Therefore, this article proposes a graph convolutional network-based deep reinforcement learning (GCN-based DRL) solution for the joint optimization problem in practical communication scenarios. The GCN is integrated into deep reinforcement learning (DRL) to obtain the network's spatial dependence and elevate the generalization performance of the proposed method. Specifically, the GCN adopts the first-order Chebyshev polynomial to approximate the graph convolution kernel, which reduces the complexity of the algorithm and improves the feasibility for the joint optimization task. Furthermore, priority experience replay is employed to accelerate the convergence speed of the model training process. Numerical simulations demonstrate that the proposed GCN-based DRL algorithm has good convergence and outperforms the benchmark methods in terms of the average end-to-end delay.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eric888应助辛勤的诗蕊采纳,获得50
刚刚
刚刚
顺利毕业完成签到,获得积分10
刚刚
1秒前
科研小白完成签到,获得积分10
1秒前
Ava应助甜蜜花采纳,获得10
1秒前
上官若男应助Raza采纳,获得10
1秒前
2秒前
Ava应助眼睛大行云采纳,获得10
2秒前
3秒前
xue完成签到 ,获得积分10
3秒前
健忘丹珍完成签到,获得积分10
3秒前
3秒前
3秒前
坤坤蹦蹦跳跳完成签到,获得积分10
5秒前
害羞映容完成签到,获得积分10
5秒前
科研通AI6应助小亮哈哈采纳,获得10
5秒前
5秒前
5秒前
所所应助liriyii采纳,获得10
5秒前
核糖体完成签到,获得积分20
6秒前
7秒前
Lloignyth完成签到,获得积分10
7秒前
赵苏程完成签到,获得积分10
7秒前
7秒前
7秒前
乐乐应助小张醒了采纳,获得10
8秒前
半凡完成签到,获得积分10
8秒前
小小666完成签到 ,获得积分10
8秒前
幽悠梦儿发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
Elin完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
平平无奇发布了新的文献求助10
10秒前
10秒前
青年才俊发布了新的文献求助10
10秒前
beijita完成签到,获得积分10
11秒前
星辰大海应助ZhangF采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978