Joint Routing and Scheduling Optimization in Time-Sensitive Networks Using Graph-Convolutional-Network-Based Deep Reinforcement Learning

计算机科学 强化学习 时间复杂性 调度(生产过程) 最优化问题 回程(电信) 人工智能 计算机网络 数学优化 算法 基站 数学
作者
Yang Liu,Yifei Wei,F. Richard Yu,Zhu Han
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (23): 23981-23994 被引量:39
标识
DOI:10.1109/jiot.2022.3188826
摘要

The growing number of Internet of Things (IoT) devices brings enormous time-sensitive applications, which require real-time transmission to effectuate communication services. The ultrareliable and low-latency communication (URLLC) scenario in the fifth generation (5G) has played a critical role in supporting services with delay-sensitive properties. Time-sensitive networking (TSN) has been widely considered as a promising paradigm for enabling the deterministic transmission guarantees for 5G. However, TSN is a hybrid traffic system with time-sensitive traffic and best effort traffic, which require effective routing and scheduling to provide a deterministic and bounded delay. While joint optimization of time-sensitive and non-time-sensitive traffic greatly increases the solution space and brings a significant challenge to obtain solutions. Therefore, this article proposes a graph convolutional network-based deep reinforcement learning (GCN-based DRL) solution for the joint optimization problem in practical communication scenarios. The GCN is integrated into deep reinforcement learning (DRL) to obtain the network's spatial dependence and elevate the generalization performance of the proposed method. Specifically, the GCN adopts the first-order Chebyshev polynomial to approximate the graph convolution kernel, which reduces the complexity of the algorithm and improves the feasibility for the joint optimization task. Furthermore, priority experience replay is employed to accelerate the convergence speed of the model training process. Numerical simulations demonstrate that the proposed GCN-based DRL algorithm has good convergence and outperforms the benchmark methods in terms of the average end-to-end delay.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
笑点低的小天鹅完成签到,获得积分10
1秒前
慕青应助丫丫采纳,获得10
1秒前
高永康应助小罗采纳,获得10
1秒前
自由寄柔发布了新的文献求助10
1秒前
万能图书馆应助LAN采纳,获得10
1秒前
李健的小迷弟应助RC_Wang采纳,获得10
2秒前
Owen应助询鲤采纳,获得10
2秒前
yuyu发布了新的文献求助10
3秒前
3秒前
3秒前
贰陆发布了新的文献求助10
3秒前
3秒前
专注酸奶发布了新的文献求助10
3秒前
小鱼儿发布了新的文献求助10
4秒前
河畔发布了新的文献求助10
4秒前
4秒前
共享精神应助诚c采纳,获得10
5秒前
5秒前
5秒前
haha发布了新的文献求助10
6秒前
汉堡包应助文艺谷蓝采纳,获得10
6秒前
Akun发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
8秒前
冬嘉完成签到,获得积分10
8秒前
小二郎应助ANNNNNN采纳,获得10
8秒前
8秒前
9秒前
传奇3应助自由寄柔采纳,获得10
9秒前
最好完成签到 ,获得积分10
9秒前
10秒前
10秒前
小青椒应助zzz采纳,获得30
10秒前
11秒前
尉迟希望应助Phoebe0730采纳,获得10
11秒前
河畔完成签到,获得积分20
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261822
求助须知:如何正确求助?哪些是违规求助? 4422960
关于积分的说明 13768092
捐赠科研通 4297447
什么是DOI,文献DOI怎么找? 2357968
邀请新用户注册赠送积分活动 1354348
关于科研通互助平台的介绍 1315454