Joint Routing and Scheduling Optimization in Time-Sensitive Networks Using Graph-Convolutional-Network-Based Deep Reinforcement Learning

计算机科学 强化学习 时间复杂性 调度(生产过程) 最优化问题 回程(电信) 人工智能 计算机网络 数学优化 算法 基站 数学
作者
Yang Liu,Yifei Wei,F. Richard Yu,Zhu Han
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (23): 23981-23994 被引量:39
标识
DOI:10.1109/jiot.2022.3188826
摘要

The growing number of Internet of Things (IoT) devices brings enormous time-sensitive applications, which require real-time transmission to effectuate communication services. The ultrareliable and low-latency communication (URLLC) scenario in the fifth generation (5G) has played a critical role in supporting services with delay-sensitive properties. Time-sensitive networking (TSN) has been widely considered as a promising paradigm for enabling the deterministic transmission guarantees for 5G. However, TSN is a hybrid traffic system with time-sensitive traffic and best effort traffic, which require effective routing and scheduling to provide a deterministic and bounded delay. While joint optimization of time-sensitive and non-time-sensitive traffic greatly increases the solution space and brings a significant challenge to obtain solutions. Therefore, this article proposes a graph convolutional network-based deep reinforcement learning (GCN-based DRL) solution for the joint optimization problem in practical communication scenarios. The GCN is integrated into deep reinforcement learning (DRL) to obtain the network's spatial dependence and elevate the generalization performance of the proposed method. Specifically, the GCN adopts the first-order Chebyshev polynomial to approximate the graph convolution kernel, which reduces the complexity of the algorithm and improves the feasibility for the joint optimization task. Furthermore, priority experience replay is employed to accelerate the convergence speed of the model training process. Numerical simulations demonstrate that the proposed GCN-based DRL algorithm has good convergence and outperforms the benchmark methods in terms of the average end-to-end delay.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
你说完成签到,获得积分10
1秒前
1秒前
科研通AI6应助大胆铃铛采纳,获得10
2秒前
长情笑柳应助珈蓝采纳,获得10
2秒前
彩色芷发布了新的文献求助10
3秒前
高高很厉害应助聂难敌采纳,获得50
3秒前
浮游应助老实凝竹采纳,获得10
4秒前
Zx_1993应助Ann采纳,获得20
4秒前
4秒前
5秒前
ice完成签到,获得积分10
5秒前
ldx完成签到,获得积分10
6秒前
和谐的敏发布了新的文献求助10
7秒前
碧蓝绮山应助Aicy1111111采纳,获得10
7秒前
星辰大海应助12345采纳,获得10
8秒前
江上挽风吟墨染完成签到,获得积分10
8秒前
王一正完成签到,获得积分10
11秒前
12秒前
王小雨完成签到 ,获得积分10
12秒前
huangyikun完成签到,获得积分10
12秒前
13秒前
15秒前
15秒前
和谐的敏完成签到,获得积分10
16秒前
16秒前
赵梦妍发布了新的文献求助10
17秒前
善学以致用应助低空飞行采纳,获得10
17秒前
zzzxiangyi完成签到,获得积分10
18秒前
LiYanqin完成签到,获得积分10
18秒前
俏皮的听云完成签到,获得积分10
18秒前
NLNL完成签到,获得积分20
18秒前
xt完成签到,获得积分10
19秒前
19秒前
勇敢的心发布了新的文献求助10
19秒前
19秒前
19秒前
shasha完成签到,获得积分10
19秒前
魅域苍穹发布了新的文献求助10
19秒前
linjiaxin发布了新的文献求助10
19秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342879
求助须知:如何正确求助?哪些是违规求助? 4478579
关于积分的说明 13940083
捐赠科研通 4375429
什么是DOI,文献DOI怎么找? 2404055
邀请新用户注册赠送积分活动 1396617
关于科研通互助平台的介绍 1368930