Joint Routing and Scheduling Optimization in Time-Sensitive Networks Using Graph-Convolutional-Network-Based Deep Reinforcement Learning

计算机科学 强化学习 时间复杂性 调度(生产过程) 最优化问题 回程(电信) 人工智能 计算机网络 数学优化 算法 基站 数学
作者
Yang Liu,Yifei Wei,F. Richard Yu,Zhu Han
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (23): 23981-23994 被引量:39
标识
DOI:10.1109/jiot.2022.3188826
摘要

The growing number of Internet of Things (IoT) devices brings enormous time-sensitive applications, which require real-time transmission to effectuate communication services. The ultrareliable and low-latency communication (URLLC) scenario in the fifth generation (5G) has played a critical role in supporting services with delay-sensitive properties. Time-sensitive networking (TSN) has been widely considered as a promising paradigm for enabling the deterministic transmission guarantees for 5G. However, TSN is a hybrid traffic system with time-sensitive traffic and best effort traffic, which require effective routing and scheduling to provide a deterministic and bounded delay. While joint optimization of time-sensitive and non-time-sensitive traffic greatly increases the solution space and brings a significant challenge to obtain solutions. Therefore, this article proposes a graph convolutional network-based deep reinforcement learning (GCN-based DRL) solution for the joint optimization problem in practical communication scenarios. The GCN is integrated into deep reinforcement learning (DRL) to obtain the network's spatial dependence and elevate the generalization performance of the proposed method. Specifically, the GCN adopts the first-order Chebyshev polynomial to approximate the graph convolution kernel, which reduces the complexity of the algorithm and improves the feasibility for the joint optimization task. Furthermore, priority experience replay is employed to accelerate the convergence speed of the model training process. Numerical simulations demonstrate that the proposed GCN-based DRL algorithm has good convergence and outperforms the benchmark methods in terms of the average end-to-end delay.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿龙完成签到,获得积分10
刚刚
禹依白完成签到,获得积分10
刚刚
kuuga4256完成签到,获得积分10
刚刚
1秒前
None完成签到 ,获得积分10
1秒前
张伟完成签到,获得积分10
1秒前
张西西完成签到 ,获得积分10
2秒前
2秒前
my123完成签到,获得积分10
2秒前
cnspower完成签到,获得积分10
2秒前
无辜不言完成签到,获得积分10
3秒前
4秒前
舒服的初蓝完成签到,获得积分10
4秒前
DAXX完成签到 ,获得积分10
4秒前
nnnn完成签到,获得积分10
5秒前
雨淋沐风发布了新的文献求助10
5秒前
葛怀锐完成签到 ,获得积分10
6秒前
DijiaXu应助llll采纳,获得10
6秒前
NkagSiab完成签到,获得积分10
7秒前
hh完成签到,获得积分10
7秒前
8秒前
帅玉玉完成签到,获得积分10
8秒前
俏皮火完成签到 ,获得积分10
8秒前
8秒前
沉默听芹完成签到,获得积分10
8秒前
lym完成签到,获得积分10
8秒前
陈肖楠完成签到,获得积分10
8秒前
山野桃饼完成签到,获得积分10
9秒前
ash完成签到,获得积分10
9秒前
9秒前
兴奋的天蓉完成签到 ,获得积分10
10秒前
zdnn完成签到,获得积分10
11秒前
孙友浩完成签到,获得积分10
11秒前
微光完成签到,获得积分10
11秒前
梅赛德斯奔驰完成签到,获得积分10
12秒前
舒先生完成签到,获得积分10
13秒前
曾建完成签到 ,获得积分10
14秒前
唐僧肉臊子面完成签到,获得积分10
14秒前
David完成签到,获得积分0
14秒前
可期完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4570943
求助须知:如何正确求助?哪些是违规求助? 3992327
关于积分的说明 12357387
捐赠科研通 3665133
什么是DOI,文献DOI怎么找? 2019936
邀请新用户注册赠送积分活动 1054342
科研通“疑难数据库(出版商)”最低求助积分说明 941891