Joint Routing and Scheduling Optimization in Time-Sensitive Networks Using Graph-Convolutional-Network-Based Deep Reinforcement Learning

计算机科学 强化学习 调度(生产过程) 人工智能 分布式计算 计算机网络 数学优化 数学
作者
Yang Liu,Yifei Wei,F. Richard Yu,Zhu Han
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (23): 23981-23994 被引量:29
标识
DOI:10.1109/jiot.2022.3188826
摘要

The growing number of Internet of Things (IoT) devices brings enormous time-sensitive applications, which require real-time transmission to effectuate communication services. The ultrareliable and low-latency communication (URLLC) scenario in the fifth generation (5G) has played a critical role in supporting services with delay-sensitive properties. Time-sensitive networking (TSN) has been widely considered as a promising paradigm for enabling the deterministic transmission guarantees for 5G. However, TSN is a hybrid traffic system with time-sensitive traffic and best effort traffic, which require effective routing and scheduling to provide a deterministic and bounded delay. While joint optimization of time-sensitive and non-time-sensitive traffic greatly increases the solution space and brings a significant challenge to obtain solutions. Therefore, this article proposes a graph convolutional network-based deep reinforcement learning (GCN-based DRL) solution for the joint optimization problem in practical communication scenarios. The GCN is integrated into deep reinforcement learning (DRL) to obtain the network's spatial dependence and elevate the generalization performance of the proposed method. Specifically, the GCN adopts the first-order Chebyshev polynomial to approximate the graph convolution kernel, which reduces the complexity of the algorithm and improves the feasibility for the joint optimization task. Furthermore, priority experience replay is employed to accelerate the convergence speed of the model training process. Numerical simulations demonstrate that the proposed GCN-based DRL algorithm has good convergence and outperforms the benchmark methods in terms of the average end-to-end delay.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
薰硝壤应助汪123采纳,获得10
1秒前
ZHAZHA完成签到,获得积分10
2秒前
123发布了新的文献求助10
2秒前
十言发布了新的文献求助30
3秒前
4秒前
5秒前
8秒前
kdjm688应助吸铁石睡觉采纳,获得10
9秒前
zfczfc关注了科研通微信公众号
9秒前
有为发布了新的文献求助10
10秒前
10秒前
隐形曼青应助hehe_733采纳,获得10
10秒前
完美世界应助DAJI采纳,获得10
11秒前
dwz发布了新的文献求助20
11秒前
小二郎应助熊猫采纳,获得10
12秒前
半阙完成签到,获得积分10
14秒前
十言完成签到,获得积分10
14秒前
15秒前
holic发布了新的文献求助10
16秒前
17秒前
NexusExplorer应助吸铁石睡觉采纳,获得10
17秒前
18秒前
15136780701完成签到 ,获得积分10
18秒前
zzzmmmhhh完成签到 ,获得积分20
18秒前
19秒前
JamesPei应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
ding应助科研通管家采纳,获得10
19秒前
Chillyi应助科研通管家采纳,获得20
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
orixero应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
大个应助科研通管家采纳,获得10
20秒前
打打应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
所所应助科研通管家采纳,获得10
20秒前
共享精神应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084389
求助须知:如何正确求助?哪些是违规求助? 2737327
关于积分的说明 7544689
捐赠科研通 2386947
什么是DOI,文献DOI怎么找? 1265702
科研通“疑难数据库(出版商)”最低求助积分说明 613158
版权声明 598320