Joint Routing and Scheduling Optimization in Time-Sensitive Networks Using Graph-Convolutional-Network-Based Deep Reinforcement Learning

计算机科学 强化学习 调度(生产过程) 人工智能 分布式计算 计算机网络 数学优化 数学
作者
Yang Liu,Yifei Wei,F. Richard Yu,Zhu Han
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (23): 23981-23994 被引量:29
标识
DOI:10.1109/jiot.2022.3188826
摘要

The growing number of Internet of Things (IoT) devices brings enormous time-sensitive applications, which require real-time transmission to effectuate communication services. The ultrareliable and low-latency communication (URLLC) scenario in the fifth generation (5G) has played a critical role in supporting services with delay-sensitive properties. Time-sensitive networking (TSN) has been widely considered as a promising paradigm for enabling the deterministic transmission guarantees for 5G. However, TSN is a hybrid traffic system with time-sensitive traffic and best effort traffic, which require effective routing and scheduling to provide a deterministic and bounded delay. While joint optimization of time-sensitive and non-time-sensitive traffic greatly increases the solution space and brings a significant challenge to obtain solutions. Therefore, this article proposes a graph convolutional network-based deep reinforcement learning (GCN-based DRL) solution for the joint optimization problem in practical communication scenarios. The GCN is integrated into deep reinforcement learning (DRL) to obtain the network's spatial dependence and elevate the generalization performance of the proposed method. Specifically, the GCN adopts the first-order Chebyshev polynomial to approximate the graph convolution kernel, which reduces the complexity of the algorithm and improves the feasibility for the joint optimization task. Furthermore, priority experience replay is employed to accelerate the convergence speed of the model training process. Numerical simulations demonstrate that the proposed GCN-based DRL algorithm has good convergence and outperforms the benchmark methods in terms of the average end-to-end delay.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BIUBIU发布了新的文献求助20
2秒前
善学以致用应助大胆浩然采纳,获得10
3秒前
小严发布了新的文献求助10
3秒前
塔塔饼完成签到,获得积分10
5秒前
Lin完成签到,获得积分10
5秒前
6秒前
真不记得用户名完成签到 ,获得积分10
6秒前
卓立0418发布了新的文献求助10
7秒前
同福发布了新的文献求助10
7秒前
李爱国应助qqa采纳,获得10
9秒前
9秒前
看你个完成签到,获得积分10
10秒前
余海川完成签到,获得积分10
10秒前
小二郎应助源源不断采纳,获得10
11秒前
12秒前
橘络发布了新的文献求助10
13秒前
14秒前
hui完成签到,获得积分10
14秒前
小严完成签到,获得积分10
16秒前
17秒前
17秒前
NexusExplorer应助BIUBIU采纳,获得10
19秒前
酷波er应助tansl1989采纳,获得10
20秒前
20秒前
20秒前
桐桐应助大炮台采纳,获得10
21秒前
qqa发布了新的文献求助10
22秒前
23秒前
共享精神应助xumengsuo采纳,获得10
23秒前
23秒前
hui发布了新的文献求助10
24秒前
夏青荷发布了新的文献求助10
24秒前
24秒前
25秒前
26秒前
wu发布了新的文献求助10
28秒前
28秒前
28秒前
Lucas应助地狱跳跳虎采纳,获得10
28秒前
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459066
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037605
捐赠科研通 2742924
什么是DOI,文献DOI怎么找? 1504562
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589