非阻塞I/O
材料科学
纳米技术
压力(语言学)
化学工程
化学
催化作用
有机化学
语言学
工程类
哲学
作者
Chunyan Li,Pil Gyu Choi,Yoshitake Masuda
标识
DOI:10.1002/advs.202202442
摘要
NiO nanosheets are synthesized in situ on gas sensor chips using a facile solvothermal method. These NiO nanosheets are then used as gas sensors to analyze allyl mercaptan (AM) gas, an exhaled biomarker of psychological stress. Additionally, MnO2 nanosheets are synthesized onto the surfaces of the NiO nanosheets to enhance the gas-sensing performance. The gas-sensing response of the NiO nanosheet sensor is higher than that of the MnO2 @NiO nanosheet sensor. The response value can reach 56.69, when the NiO nanosheet sensor detects 40 ppm AM gas. Interestingly, a faster response time (115 s) is obtained when the MnO2 @NiO nanosheet sensor is exposed to 40 ppm of AM gas. Moreover, the selectivity toward AM gas is about 17-37 times greater than those toward confounders. The mechanism of gas sensing and the factors contributing to the enhance gas response of the NiO and MnO2 @NiO nanosheets are discussed. The products of AM gas oxidized by the gas sensor are identified by gas chromatography-mass spectrometry (GC/MS). AM gas detection is an unprecedented application for semiconductor metal oxides. From a broader perspective, the developed sensors represent a new platform for the identification and monitoring of gases released by humans under psychological stress, which is increasing in modern life.
科研通智能强力驱动
Strongly Powered by AbleSci AI