Enhanced Photoelectrochemical Water Splitting of Black Silicon Photoanode with pH‐Dependent Copper‐Bipyridine Catalysts

塔菲尔方程 分解水 过电位 催化作用 光电流 电子转移 氧化还原 化学 化学工程 材料科学 无机化学 光化学 电化学 物理化学 电极 光催化 有机化学 光电子学 工程类
作者
Jing‐Xin Jian,Jia‐Xin Liao,Mu‐Han Zhou,Mingming Yao,Yijing Chen,Xi‐Wen Liang,Chao Ping Liu,Qing‐Xiao Tong
出处
期刊:Chemistry: A European Journal [Wiley]
卷期号:28 (57) 被引量:12
标识
DOI:10.1002/chem.202201520
摘要

Since the water oxidation half-reaction requires the transfer of multi-electrons and the formation of O-O bond, it's crucial to investigate the catalytic behaviours of semiconductor photoanodes. In this work, a bio-inspired copper-bipyridine catalyst of Cu(dcbpy) is decorated on the nanoporous Si photoanode (black Si, b-Si). Under AM1.5G illumination, the b-Si/Cu(dcbpy) photoanode exhibits a high photocurrent density of 6.31 mA cm-2 at 1.5 VRHE at pH 11.0, which is dramatically improved from the b-Si photoanode (1.03 mA cm-2 ) and f-Si photoanode (0.0087 mA cm-2 ). Mechanism studies demonstrate that b-Si/Cu(dcbpy) has improved light-harvesting, interfacial charge-transfer, and surface area for water splitting. More interestingly, b-Si/Cu(dcbpy) exhibits a pH-dependent water oxidation behaviour with a minimum Tafel slope of 241 mV/dec and the lowest overpotential of 0.19 V at pH 11.0, which is due to the monomer/dimer equilibrium of copper catalyst. At pH ∼11, the formation of dimeric hydroxyl-complex could form O-O bond through a redox isomerization (RI) mechanism, which decreases the required potential for water oxidation. This in-depth understanding of pH-dependent water oxidation catalyst brings insights into the design of dimer water oxidation catalysts and efficient photoanodes for solar energy conversion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ooooodai发布了新的文献求助10
刚刚
喜东东应助abcd采纳,获得40
1秒前
2秒前
imkhun1021发布了新的文献求助10
3秒前
一口一个粽子完成签到 ,获得积分10
3秒前
起床别睡了完成签到 ,获得积分10
4秒前
科研混子想毕业完成签到,获得积分20
5秒前
唠叨的友容完成签到,获得积分10
5秒前
科研通AI6应助也好采纳,获得10
6秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
林娜琏完成签到,获得积分10
8秒前
33完成签到,获得积分10
10秒前
10秒前
阳光豆芽完成签到 ,获得积分10
11秒前
12秒前
14秒前
Vivian完成签到,获得积分10
14秒前
斯文败类应助qaxt采纳,获得10
14秒前
15秒前
天天快乐应助老年人采纳,获得10
15秒前
彭于晏应助bosheng采纳,获得10
15秒前
不好发布了新的文献求助10
16秒前
17秒前
陶醉的冰珍完成签到,获得积分10
17秒前
18秒前
18秒前
NexusExplorer应助jiyuan采纳,获得10
19秒前
沉静幻香完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
复杂黑夜发布了新的文献求助10
20秒前
科研通AI2S应助研友_8RyzBZ采纳,获得10
20秒前
wjjjj发布了新的文献求助10
21秒前
21秒前
俭朴雪兰发布了新的文献求助10
21秒前
852应助酷炫的谷丝采纳,获得10
22秒前
22秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615265
求助须知:如何正确求助?哪些是违规求助? 4700164
关于积分的说明 14906941
捐赠科研通 4741703
什么是DOI,文献DOI怎么找? 2548025
邀请新用户注册赠送积分活动 1511771
关于科研通互助平台的介绍 1473781