Multi-modal Depression Estimation based on Sub-attentional Fusion

水准点(测量) 萧条(经济学) 计算机科学 情态动词 任务(项目管理) 预处理器 人工智能 机器学习 传感器融合 估计 工程类 化学 大地测量学 系统工程 高分子化学 经济 宏观经济学 地理
作者
Ping-Cheng Wei,Kunyu Peng,Alina Roitberg,Kailun Yang,Jiaming Zhang,Rainer Stiefelhagen
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2207.06180
摘要

Failure to timely diagnose and effectively treat depression leads to over 280 million people suffering from this psychological disorder worldwide. The information cues of depression can be harvested from diverse heterogeneous resources, e.g., audio, visual, and textual data, raising demand for new effective multi-modal fusion approaches for automatic estimation. In this work, we tackle the task of automatically identifying depression from multi-modal data and introduce a sub-attention mechanism for linking heterogeneous information while leveraging Convolutional Bidirectional LSTM as our backbone. To validate this idea, we conduct extensive experiments on the public DAIC-WOZ benchmark for depression assessment featuring different evaluation modes and taking gender-specific biases into account. The proposed model yields effective results with 0.89 precision and 0.70 F1-score in detecting major depression and 4.92 MAE in estimating the severity. Our attention-based fusion module consistently outperforms conventional late fusion approaches and achieves competitive performance compared to the previously published depression estimation frameworks, while learning to diagnose the disorder end-to-end and relying on far fewer preprocessing steps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
向荣发布了新的文献求助10
刚刚
1秒前
1秒前
戴云溥应助昏睡的蟠桃采纳,获得30
1秒前
1秒前
星空完成签到,获得积分10
1秒前
斯文败类应助完犊子采纳,获得10
2秒前
initia完成签到,获得积分10
2秒前
2秒前
学术小白发布了新的文献求助10
2秒前
Gh发布了新的文献求助20
2秒前
2秒前
2秒前
一期一会发布了新的文献求助10
2秒前
liuyu完成签到 ,获得积分10
2秒前
脑洞疼应助123采纳,获得10
2秒前
加油冲冲冲完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
aw完成签到,获得积分10
4秒前
科研通AI6应助天文甄采纳,获得10
4秒前
健忘蓝血完成签到,获得积分10
4秒前
orixero应助卡夫卡的熊采纳,获得10
4秒前
winwin发布了新的文献求助10
4秒前
4秒前
ca完成签到,获得积分10
5秒前
orixero应助沉默的倔驴采纳,获得10
5秒前
科研通AI6应助Ry采纳,获得10
5秒前
Ava应助知秋采纳,获得10
6秒前
6秒前
6秒前
shizhiheng发布了新的文献求助10
6秒前
领导范儿应助优秀画板采纳,获得10
7秒前
野馬发布了新的文献求助10
7秒前
aaa北大街发布了新的文献求助10
7秒前
负责的飞机完成签到,获得积分10
7秒前
orixero应助mumufan采纳,获得10
7秒前
7秒前
科研小白发布了新的文献求助10
8秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582496
求助须知:如何正确求助?哪些是违规求助? 4666557
关于积分的说明 14763364
捐赠科研通 4608754
什么是DOI,文献DOI怎么找? 2528816
邀请新用户注册赠送积分活动 1498082
关于科研通互助平台的介绍 1466764