清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Learning Approach for Detecting Work-Related Stress Using Multimodal Signals

人工智能 模式识别(心理学) 计算机科学 特征(语言学) 面部表情 压力(语言学) 特征提取 深度学习 人工神经网络 深信不疑网络 语音识别 语言学 哲学
作者
Wonju Seo,Nam‐Ho Kim,Cheolsoo Park,Sung‐Min Park
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (12): 11892-11902 被引量:30
标识
DOI:10.1109/jsen.2022.3170915
摘要

Work-related stress causes serious negative physiological and socioeconomic effects on employees. Detecting stress levels in a timely manner is important for appropriate stress management; therefore, this study proposes a deep learning (DL) approach that accurately detects work-related stress by using multimodal signals. We designed a protocol that simulates stressful situations and recruited 24 subjects for the experiments. Then, we collected electrocardiogram (ECG), respiration (RESP), and video data. The datasets were pre-processed and 10-s ECG and RESP signals and a sequence of facial features were fed into our deep neural network. Sixty-eight facial landmarks' coordinates were extracted, and facial textures were extracted from a pre-trained network based on facial expression recognition. Each signal was processed by each of its network branch, and data were fused at two different levels: 1) feature-level and 2) decision-level. The feature-level fusion that used RESP and facial landmarks' coordinates showed average accuracy of 73.3%, AUC of 0.822, and F1 score of 0.700 in two-level stress classification, and the feature-level fusion that used ECG, RESP, and the coordinates showed average accuracy of 54.4%, AUC of 0.727, and F1 score of 0.508 in three-level stress classification. When analyzing the weights in the decision-level fusion, we found that the importance of each information item varied according to the stress classification problem. When comparing t-stochastic neighbor embedding results, we observed that overlapped samples of different classes caused performance degradation in both classifications. Our findings suggest that the proposed DL approach fusing multimodal and heterogeneous signals can enhance stress detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋秋完成签到 ,获得积分10
3秒前
会写日记的乌龟先生完成签到 ,获得积分10
5秒前
悄悄完成签到 ,获得积分10
13秒前
TL完成签到 ,获得积分10
14秒前
carl完成签到,获得积分10
15秒前
回忆应助朱鑫汗采纳,获得10
15秒前
害怕的冰颜完成签到 ,获得积分10
33秒前
追梦完成签到,获得积分10
41秒前
小小咸鱼完成签到 ,获得积分10
42秒前
陈A完成签到 ,获得积分10
47秒前
秋夜临完成签到,获得积分0
1分钟前
跳跃的鹏飞完成签到 ,获得积分0
1分钟前
海英完成签到,获得积分10
1分钟前
luobote完成签到 ,获得积分10
1分钟前
吕佳完成签到 ,获得积分10
1分钟前
限量版小祸害完成签到 ,获得积分10
1分钟前
qiqi完成签到,获得积分10
1分钟前
1分钟前
我是老大应助Joy采纳,获得10
1分钟前
qiqiqiqiqi完成签到 ,获得积分10
1分钟前
Singularity完成签到,获得积分0
1分钟前
早睡早起身体好Q完成签到 ,获得积分10
1分钟前
沉静香氛完成签到 ,获得积分10
1分钟前
naczx完成签到,获得积分0
1分钟前
李志全完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
xgx984完成签到,获得积分10
2分钟前
共享精神应助keke采纳,获得10
2分钟前
Nene完成签到 ,获得积分10
2分钟前
ChatGPT完成签到,获得积分10
2分钟前
大模型应助Zhuyin采纳,获得10
2分钟前
2分钟前
MoodMeed完成签到,获得积分10
2分钟前
2分钟前
Joy发布了新的文献求助10
2分钟前
keke发布了新的文献求助10
2分钟前
顺利问玉完成签到 ,获得积分10
2分钟前
害羞的裘完成签到 ,获得积分10
2分钟前
此时此刻完成签到 ,获得积分10
2分钟前
SciGPT应助Joy采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612035
求助须知:如何正确求助?哪些是违规求助? 4696186
关于积分的说明 14890583
捐赠科研通 4731071
什么是DOI,文献DOI怎么找? 2546115
邀请新用户注册赠送积分活动 1510425
关于科研通互助平台的介绍 1473310