Deep Learning Approach for Detecting Work-Related Stress Using Multimodal Signals

人工智能 模式识别(心理学) 计算机科学 特征(语言学) 面部表情 压力(语言学) 特征提取 深度学习 人工神经网络 深信不疑网络 语音识别 哲学 语言学
作者
Wonju Seo,Nam‐Ho Kim,Cheolsoo Park,Sung‐Min Park
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (12): 11892-11902 被引量:30
标识
DOI:10.1109/jsen.2022.3170915
摘要

Work-related stress causes serious negative physiological and socioeconomic effects on employees. Detecting stress levels in a timely manner is important for appropriate stress management; therefore, this study proposes a deep learning (DL) approach that accurately detects work-related stress by using multimodal signals. We designed a protocol that simulates stressful situations and recruited 24 subjects for the experiments. Then, we collected electrocardiogram (ECG), respiration (RESP), and video data. The datasets were pre-processed and 10-s ECG and RESP signals and a sequence of facial features were fed into our deep neural network. Sixty-eight facial landmarks' coordinates were extracted, and facial textures were extracted from a pre-trained network based on facial expression recognition. Each signal was processed by each of its network branch, and data were fused at two different levels: 1) feature-level and 2) decision-level. The feature-level fusion that used RESP and facial landmarks' coordinates showed average accuracy of 73.3%, AUC of 0.822, and F1 score of 0.700 in two-level stress classification, and the feature-level fusion that used ECG, RESP, and the coordinates showed average accuracy of 54.4%, AUC of 0.727, and F1 score of 0.508 in three-level stress classification. When analyzing the weights in the decision-level fusion, we found that the importance of each information item varied according to the stress classification problem. When comparing t-stochastic neighbor embedding results, we observed that overlapped samples of different classes caused performance degradation in both classifications. Our findings suggest that the proposed DL approach fusing multimodal and heterogeneous signals can enhance stress detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵晨雪完成签到 ,获得积分10
1秒前
2秒前
3秒前
3秒前
刘平平完成签到,获得积分10
3秒前
4秒前
今后应助刘春秀采纳,获得10
5秒前
包容的以彤完成签到 ,获得积分10
6秒前
7秒前
kokuyomax完成签到,获得积分10
7秒前
默默的西木完成签到 ,获得积分10
8秒前
琉璃发布了新的文献求助10
8秒前
sinn17发布了新的文献求助30
8秒前
刘平平发布了新的文献求助20
8秒前
球球的铲屎官完成签到,获得积分10
9秒前
苏浩然完成签到,获得积分10
9秒前
10秒前
高高一鸣完成签到,获得积分10
12秒前
14秒前
15秒前
cao完成签到,获得积分10
15秒前
hux发布了新的文献求助10
15秒前
居嵘完成签到 ,获得积分10
17秒前
Nature发布了新的文献求助10
18秒前
冷酷的菲音完成签到 ,获得积分10
20秒前
DirtyFlynn发布了新的文献求助10
20秒前
22秒前
甜美梦竹完成签到,获得积分10
22秒前
丶huasheng完成签到 ,获得积分10
23秒前
yeyiliux发布了新的文献求助20
27秒前
29秒前
徐诗蕾发布了新的文献求助30
29秒前
zhuzhu完成签到 ,获得积分10
30秒前
leslieo3o发布了新的文献求助10
30秒前
31秒前
打工仔完成签到,获得积分10
31秒前
natmed应助进击的巨人采纳,获得10
32秒前
初末发布了新的文献求助10
32秒前
MOF完成签到 ,获得积分10
33秒前
林黛玉完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295559
求助须知:如何正确求助?哪些是违规求助? 4445074
关于积分的说明 13835332
捐赠科研通 4329472
什么是DOI,文献DOI怎么找? 2376680
邀请新用户注册赠送积分活动 1371973
关于科研通互助平台的介绍 1337270