Deep Learning Approach for Detecting Work-Related Stress Using Multimodal Signals

人工智能 模式识别(心理学) 计算机科学 特征(语言学) 面部表情 压力(语言学) 特征提取 深度学习 人工神经网络 深信不疑网络 语音识别 语言学 哲学
作者
Wonju Seo,Nam‐Ho Kim,Cheolsoo Park,Sung‐Min Park
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (12): 11892-11902 被引量:30
标识
DOI:10.1109/jsen.2022.3170915
摘要

Work-related stress causes serious negative physiological and socioeconomic effects on employees. Detecting stress levels in a timely manner is important for appropriate stress management; therefore, this study proposes a deep learning (DL) approach that accurately detects work-related stress by using multimodal signals. We designed a protocol that simulates stressful situations and recruited 24 subjects for the experiments. Then, we collected electrocardiogram (ECG), respiration (RESP), and video data. The datasets were pre-processed and 10-s ECG and RESP signals and a sequence of facial features were fed into our deep neural network. Sixty-eight facial landmarks' coordinates were extracted, and facial textures were extracted from a pre-trained network based on facial expression recognition. Each signal was processed by each of its network branch, and data were fused at two different levels: 1) feature-level and 2) decision-level. The feature-level fusion that used RESP and facial landmarks' coordinates showed average accuracy of 73.3%, AUC of 0.822, and F1 score of 0.700 in two-level stress classification, and the feature-level fusion that used ECG, RESP, and the coordinates showed average accuracy of 54.4%, AUC of 0.727, and F1 score of 0.508 in three-level stress classification. When analyzing the weights in the decision-level fusion, we found that the importance of each information item varied according to the stress classification problem. When comparing t-stochastic neighbor embedding results, we observed that overlapped samples of different classes caused performance degradation in both classifications. Our findings suggest that the proposed DL approach fusing multimodal and heterogeneous signals can enhance stress detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助魔力巴啦啦采纳,获得10
刚刚
刚刚
1秒前
喜悦的开山完成签到,获得积分10
1秒前
Newt完成签到,获得积分10
1秒前
Threeeeeee发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
幽默尔蓝发布了新的文献求助10
4秒前
4秒前
上官若男应助江小草采纳,获得10
5秒前
林大侠发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
鳗鱼飞鸟完成签到 ,获得积分20
8秒前
8秒前
8秒前
上官若男应助宇清采纳,获得10
9秒前
9秒前
xieyue发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
Threeeeeee完成签到,获得积分10
10秒前
10秒前
张雷应助心灵美鑫采纳,获得20
10秒前
传奇3应助JJ采纳,获得10
10秒前
11秒前
11秒前
12秒前
EH发布了新的文献求助10
12秒前
熊宇发布了新的文献求助10
12秒前
星辰大海应助心灵美从寒采纳,获得10
12秒前
13秒前
accept完成签到,获得积分10
13秒前
14秒前
王秋婷发布了新的文献求助10
14秒前
张雷应助谨慎采白采纳,获得20
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979122
求助须知:如何正确求助?哪些是违规求助? 3522967
关于积分的说明 11215682
捐赠科研通 3260436
什么是DOI,文献DOI怎么找? 1799990
邀请新用户注册赠送积分活动 878770
科研通“疑难数据库(出版商)”最低求助积分说明 807061