Deep Learning Approach for Detecting Work-Related Stress Using Multimodal Signals

人工智能 模式识别(心理学) 计算机科学 特征(语言学) 面部表情 压力(语言学) 特征提取 深度学习 人工神经网络 深信不疑网络 语音识别 哲学 语言学
作者
Wonju Seo,Nam‐Ho Kim,Cheolsoo Park,Sung‐Min Park
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (12): 11892-11902 被引量:30
标识
DOI:10.1109/jsen.2022.3170915
摘要

Work-related stress causes serious negative physiological and socioeconomic effects on employees. Detecting stress levels in a timely manner is important for appropriate stress management; therefore, this study proposes a deep learning (DL) approach that accurately detects work-related stress by using multimodal signals. We designed a protocol that simulates stressful situations and recruited 24 subjects for the experiments. Then, we collected electrocardiogram (ECG), respiration (RESP), and video data. The datasets were pre-processed and 10-s ECG and RESP signals and a sequence of facial features were fed into our deep neural network. Sixty-eight facial landmarks' coordinates were extracted, and facial textures were extracted from a pre-trained network based on facial expression recognition. Each signal was processed by each of its network branch, and data were fused at two different levels: 1) feature-level and 2) decision-level. The feature-level fusion that used RESP and facial landmarks' coordinates showed average accuracy of 73.3%, AUC of 0.822, and F1 score of 0.700 in two-level stress classification, and the feature-level fusion that used ECG, RESP, and the coordinates showed average accuracy of 54.4%, AUC of 0.727, and F1 score of 0.508 in three-level stress classification. When analyzing the weights in the decision-level fusion, we found that the importance of each information item varied according to the stress classification problem. When comparing t-stochastic neighbor embedding results, we observed that overlapped samples of different classes caused performance degradation in both classifications. Our findings suggest that the proposed DL approach fusing multimodal and heterogeneous signals can enhance stress detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yxy完成签到 ,获得积分10
刚刚
ybwei2008_163完成签到,获得积分20
刚刚
wentong完成签到,获得积分10
刚刚
葳蕤苍生发布了新的文献求助10
2秒前
酷酷李可爱婕完成签到 ,获得积分10
3秒前
精明的飞槐完成签到 ,获得积分10
3秒前
九点半上课了完成签到,获得积分10
4秒前
情怀应助橘子海采纳,获得10
5秒前
科研通AI2S应助芒果采纳,获得10
8秒前
daheeeee完成签到,获得积分10
10秒前
wwz应助cy采纳,获得10
10秒前
11秒前
zh发布了新的文献求助30
15秒前
毛毛完成签到,获得积分10
16秒前
17秒前
打打应助keyan采纳,获得10
18秒前
范白容完成签到 ,获得积分0
21秒前
董董完成签到,获得积分20
22秒前
wanci应助爱听歌衬衫采纳,获得10
23秒前
AU完成签到 ,获得积分10
25秒前
大模型应助dzy1317采纳,获得10
28秒前
领导范儿应助mwm621采纳,获得10
28秒前
辣辣完成签到,获得积分10
29秒前
cy完成签到,获得积分10
29秒前
二二完成签到 ,获得积分10
30秒前
Sci完成签到,获得积分10
30秒前
Jasper应助他吞吞吐吐采纳,获得10
31秒前
WTH完成签到,获得积分10
33秒前
panpanliumin完成签到,获得积分0
34秒前
瞳梦完成签到,获得积分10
34秒前
诸葛不亮_1完成签到,获得积分10
36秒前
lulu完成签到,获得积分20
37秒前
38秒前
圈儿完成签到,获得积分10
40秒前
realtimes发布了新的文献求助10
41秒前
42秒前
KKKKKkkk发布了新的文献求助10
43秒前
香蕉惜霜完成签到,获得积分10
44秒前
JY'完成签到,获得积分0
44秒前
zhx完成签到,获得积分10
45秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162560
求助须知:如何正确求助?哪些是违规求助? 2813457
关于积分的说明 7900425
捐赠科研通 2473012
什么是DOI,文献DOI怎么找? 1316641
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175