机器人末端执行器
机器人
运动学
计算机科学
模拟
MATLAB语言
人工智能
计算机视觉
经典力学
操作系统
物理
作者
Shuzhen Yang,Jiancheng Ji,Hongxia Cai,Hao Chen
出处
期刊:IEEE Access
[Institute of Electrical and Electronics Engineers]
日期:2022-01-01
卷期号:10: 78519-78526
被引量:18
标识
DOI:10.1109/access.2022.3191802
摘要
With the improvement of the quality of life, the demands on button mushroom (Agaricus Bisporus) increase significantly. But traditional farming methods mainly rely on costly human picking, which is currently facing the time-consuming and labor-intensive problem. As machine vision technology becomes more mature, harvesting robot with flexible picking end-effector is an alternative method to address this issue. Though the conventional harvesting robot is capable of mushrooms picking, but the damage rate is relatively high for the improper picking force and motion. Thus, a novel picking end-effector for button mushrooms is designed based on vacuum negative pressure picking in this paper. The harvesting robot with flexible end-effector is proposed to solve the problem: 1) to avoid the injury when the end-effector touch the mushroom; 2) to increase the picking efficiency without damage rate increase. The structure of robotic mushroom picking end-effector is described in detail, and then the kinematic modeling and picking force analysis of this robot are presented. Lastly, the numerical simulation via the MATLAB is carried out to study the influence of the robot parameters. The bruise tests indicated that the maximal allowable stress is 0.196 MPa and mean allowable pressure is 13.82 N. Preliminary results demonstrate that the robot achieved 88.2% success rate and 2.9% damage rate in the factory environment, and there is potential for the automatic mushroom harvesting with the proposed harvesting robot.
科研通智能强力驱动
Strongly Powered by AbleSci AI