In this paper, the linear quadratic (LQ) optimal decentralized control and stabilization problems are investigated for multi-sensors networked control systems (MSNCSs) with multiple controllers of different information structure. Specifically, for a MSNCS, in view of the packet dropouts and the transmission delays, each controller may access different information sets. To begin with, the sufficient and necessary solvability conditions for the LQ decentralized control problems are developed. Consequently, for the purpose of deriving the optimal decentralized control strategy, an innovative orthogonal decomposition method is proposed to decouple the forward and backward stochastic difference equations (FBSDEs) from the maximum principle. In the following, we show that the optimal decentralized controller can be calculated according to a set of Riccati-type equations. Finally, a stabilizing controller is derived for the stabilization problem.