亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Benefits of physical and machine learning hybridization for photovoltaic power forecasting

光伏系统 均方误差 辐照度 计算机科学 一致性(知识库) 太阳辐照度 数值天气预报 功率(物理) 集合(抽象数据类型) 人工智能 机器学习 气象学 工程类 数学 统计 电气工程 物理 量子力学 程序设计语言
作者
Martin János Mayer
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:168: 112772-112772 被引量:73
标识
DOI:10.1016/j.rser.2022.112772
摘要

Irradiance-to-power conversion is an essential step of state-of-the-art photovoltaic (PV) power forecasting, regardless of the source and post-processing of irradiance forecasts. The two distinct approaches for mapping the irradiance forecasts to PV power are physical and data-driven, which can also be hybridized. The contribution of this paper is twofold; first, it proposes a concept and identifies the best implementation of a hybrid physical and machine learning irradiance-to-power conversion method. Second, a head-to-head comparison of the physical, data-driven, and hybrid methods is performed for the operational day-ahead power forecasting of 14 PV plants in Hungary based on numerical weather prediction (NWP). To respect the rule of consistency but still obtain as complete picture as possible, two directives are set, namely minimizing the mean absolute error (MAE) and minimizing the root mean square error (RMSE), and separate sets of forecasts are optimized for both directives. The results reveal that for two years of training data, the hybrid method that involves the most physically-calculated predictors can reduce the MAE by 5.2% and 10.4% compared, respectively, to the optimized physical model chains and the machine learning without any physical considerations. The two most important physical modeling steps are separation and transposition modeling, and the rest of the physical PV simulation can be left to machine learning in hybrid models without a significant increase in the errors. The optimization of the physical model chains is found to be important even in the case of hybrid modeling; therefore, it should become a standard procedure in practical applications. Finally, the hybrid method is only beneficial for at least one year of training data, while in the initial period of the operation of a PV plant, it is advised to stay with optimized physical modeling. The guidelines and recommendations of this paper can help both researchers and practitioners design and optimize their power conversion model to increase the accuracy of the PV power forecasts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
量子星尘发布了新的文献求助10
26秒前
34秒前
田様应助海饼干采纳,获得10
42秒前
56秒前
58秒前
海饼干发布了新的文献求助10
1分钟前
1分钟前
1分钟前
师兄的结果复现不出完成签到,获得积分10
1分钟前
善学以致用应助曾泰平采纳,获得10
1分钟前
1分钟前
曾泰平发布了新的文献求助10
1分钟前
黑翅鸢完成签到 ,获得积分10
1分钟前
斯文败类应助归海亦云采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助50
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4995482
求助须知:如何正确求助?哪些是违规求助? 4242486
关于积分的说明 13216168
捐赠科研通 4038471
什么是DOI,文献DOI怎么找? 2209726
邀请新用户注册赠送积分活动 1220507
关于科研通互助平台的介绍 1139443