已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Benefits of physical and machine learning hybridization for photovoltaic power forecasting

光伏系统 均方误差 辐照度 计算机科学 一致性(知识库) 太阳辐照度 数值天气预报 功率(物理) 集合(抽象数据类型) 人工智能 机器学习 气象学 工程类 数学 统计 电气工程 物理 量子力学 程序设计语言
作者
Martin János Mayer
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:168: 112772-112772 被引量:73
标识
DOI:10.1016/j.rser.2022.112772
摘要

Irradiance-to-power conversion is an essential step of state-of-the-art photovoltaic (PV) power forecasting, regardless of the source and post-processing of irradiance forecasts. The two distinct approaches for mapping the irradiance forecasts to PV power are physical and data-driven, which can also be hybridized. The contribution of this paper is twofold; first, it proposes a concept and identifies the best implementation of a hybrid physical and machine learning irradiance-to-power conversion method. Second, a head-to-head comparison of the physical, data-driven, and hybrid methods is performed for the operational day-ahead power forecasting of 14 PV plants in Hungary based on numerical weather prediction (NWP). To respect the rule of consistency but still obtain as complete picture as possible, two directives are set, namely minimizing the mean absolute error (MAE) and minimizing the root mean square error (RMSE), and separate sets of forecasts are optimized for both directives. The results reveal that for two years of training data, the hybrid method that involves the most physically-calculated predictors can reduce the MAE by 5.2% and 10.4% compared, respectively, to the optimized physical model chains and the machine learning without any physical considerations. The two most important physical modeling steps are separation and transposition modeling, and the rest of the physical PV simulation can be left to machine learning in hybrid models without a significant increase in the errors. The optimization of the physical model chains is found to be important even in the case of hybrid modeling; therefore, it should become a standard procedure in practical applications. Finally, the hybrid method is only beneficial for at least one year of training data, while in the initial period of the operation of a PV plant, it is advised to stay with optimized physical modeling. The guidelines and recommendations of this paper can help both researchers and practitioners design and optimize their power conversion model to increase the accuracy of the PV power forecasts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隋嫣然发布了新的文献求助10
刚刚
wgnahoa发布了新的文献求助10
1秒前
2秒前
烟花应助单怡嘉采纳,获得10
2秒前
上官若男应助豆兼米采纳,获得10
2秒前
如意荔枝发布了新的文献求助10
3秒前
3秒前
4秒前
庄周发布了新的文献求助10
6秒前
6秒前
7秒前
TN给TN的求助进行了留言
7秒前
9秒前
LYZSh发布了新的文献求助10
10秒前
思源应助辛勤汲采纳,获得10
10秒前
超级盼烟发布了新的文献求助10
12秒前
莫名乐乐完成签到,获得积分10
12秒前
wackykao完成签到 ,获得积分10
13秒前
14秒前
QAQ完成签到 ,获得积分10
14秒前
15秒前
16秒前
隋嫣然完成签到,获得积分10
18秒前
单亚楠发布了新的文献求助10
19秒前
木头鱼发布了新的文献求助10
19秒前
20秒前
星星完成签到 ,获得积分10
21秒前
超级盼烟完成签到,获得积分10
22秒前
24秒前
大个应助月蚀六花采纳,获得10
25秒前
26秒前
30秒前
33秒前
科研通AI6应助唐宇欣采纳,获得40
33秒前
欣雪完成签到 ,获得积分10
35秒前
Zhangtao发布了新的文献求助30
35秒前
赘婿应助单亚楠采纳,获得10
37秒前
111发布了新的文献求助10
38秒前
38秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5159682
求助须知:如何正确求助?哪些是违规求助? 4354052
关于积分的说明 13557681
捐赠科研通 4197970
什么是DOI,文献DOI怎么找? 2302354
邀请新用户注册赠送积分活动 1302400
关于科研通互助平台的介绍 1247603