Benefits of physical and machine learning hybridization for photovoltaic power forecasting

光伏系统 均方误差 辐照度 计算机科学 一致性(知识库) 太阳辐照度 数值天气预报 功率(物理) 集合(抽象数据类型) 人工智能 机器学习 气象学 工程类 数学 统计 电气工程 物理 量子力学 程序设计语言
作者
Martin János Mayer
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:168: 112772-112772 被引量:73
标识
DOI:10.1016/j.rser.2022.112772
摘要

Irradiance-to-power conversion is an essential step of state-of-the-art photovoltaic (PV) power forecasting, regardless of the source and post-processing of irradiance forecasts. The two distinct approaches for mapping the irradiance forecasts to PV power are physical and data-driven, which can also be hybridized. The contribution of this paper is twofold; first, it proposes a concept and identifies the best implementation of a hybrid physical and machine learning irradiance-to-power conversion method. Second, a head-to-head comparison of the physical, data-driven, and hybrid methods is performed for the operational day-ahead power forecasting of 14 PV plants in Hungary based on numerical weather prediction (NWP). To respect the rule of consistency but still obtain as complete picture as possible, two directives are set, namely minimizing the mean absolute error (MAE) and minimizing the root mean square error (RMSE), and separate sets of forecasts are optimized for both directives. The results reveal that for two years of training data, the hybrid method that involves the most physically-calculated predictors can reduce the MAE by 5.2% and 10.4% compared, respectively, to the optimized physical model chains and the machine learning without any physical considerations. The two most important physical modeling steps are separation and transposition modeling, and the rest of the physical PV simulation can be left to machine learning in hybrid models without a significant increase in the errors. The optimization of the physical model chains is found to be important even in the case of hybrid modeling; therefore, it should become a standard procedure in practical applications. Finally, the hybrid method is only beneficial for at least one year of training data, while in the initial period of the operation of a PV plant, it is advised to stay with optimized physical modeling. The guidelines and recommendations of this paper can help both researchers and practitioners design and optimize their power conversion model to increase the accuracy of the PV power forecasts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LIUJIE完成签到,获得积分10
刚刚
yydsyk完成签到,获得积分10
2秒前
负责的寒梅完成签到 ,获得积分10
2秒前
平常的青荷完成签到,获得积分10
4秒前
Atlantis完成签到,获得积分10
5秒前
斯文的思菱完成签到,获得积分10
5秒前
冰雪痕完成签到 ,获得积分10
6秒前
zrrr完成签到 ,获得积分10
6秒前
MLJ完成签到 ,获得积分10
7秒前
野猪完成签到,获得积分10
9秒前
fissh完成签到,获得积分10
10秒前
若水完成签到 ,获得积分10
12秒前
积极的誉完成签到 ,获得积分10
12秒前
金石为开完成签到,获得积分10
13秒前
醋醋完成签到 ,获得积分10
14秒前
14秒前
一禅完成签到 ,获得积分10
14秒前
闻屿完成签到,获得积分10
15秒前
草莓大王完成签到,获得积分10
15秒前
GQL发布了新的文献求助10
18秒前
Ghiocel完成签到,获得积分10
22秒前
争气完成签到 ,获得积分10
22秒前
Sodagreen2023完成签到,获得积分10
24秒前
啊我是那个谁完成签到,获得积分10
25秒前
张张张xxx完成签到,获得积分10
26秒前
当女遇到乔完成签到 ,获得积分10
27秒前
Vinaceliu完成签到,获得积分10
30秒前
XXXXX完成签到 ,获得积分10
30秒前
zz完成签到 ,获得积分10
33秒前
爆米花应助GQL采纳,获得10
33秒前
淳于惜雪完成签到 ,获得积分10
34秒前
台灯记得充电完成签到 ,获得积分10
34秒前
希望天下0贩的0应助incu8us采纳,获得10
34秒前
小白鞋完成签到 ,获得积分10
34秒前
小阳阳5010完成签到 ,获得积分10
35秒前
Docgyj完成签到 ,获得积分0
35秒前
整齐的电源完成签到 ,获得积分10
36秒前
俏皮白云完成签到 ,获得积分10
38秒前
风清扬完成签到,获得积分0
39秒前
西红柿完成签到,获得积分10
39秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347654
求助须知:如何正确求助?哪些是违规求助? 4481904
关于积分的说明 13948212
捐赠科研通 4380257
什么是DOI,文献DOI怎么找? 2406857
邀请新用户注册赠送积分活动 1399452
关于科研通互助平台的介绍 1372629