Benefits of physical and machine learning hybridization for photovoltaic power forecasting

光伏系统 均方误差 辐照度 计算机科学 一致性(知识库) 太阳辐照度 数值天气预报 功率(物理) 集合(抽象数据类型) 人工智能 机器学习 气象学 工程类 数学 统计 电气工程 物理 量子力学 程序设计语言
作者
Martin János Mayer
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:168: 112772-112772 被引量:73
标识
DOI:10.1016/j.rser.2022.112772
摘要

Irradiance-to-power conversion is an essential step of state-of-the-art photovoltaic (PV) power forecasting, regardless of the source and post-processing of irradiance forecasts. The two distinct approaches for mapping the irradiance forecasts to PV power are physical and data-driven, which can also be hybridized. The contribution of this paper is twofold; first, it proposes a concept and identifies the best implementation of a hybrid physical and machine learning irradiance-to-power conversion method. Second, a head-to-head comparison of the physical, data-driven, and hybrid methods is performed for the operational day-ahead power forecasting of 14 PV plants in Hungary based on numerical weather prediction (NWP). To respect the rule of consistency but still obtain as complete picture as possible, two directives are set, namely minimizing the mean absolute error (MAE) and minimizing the root mean square error (RMSE), and separate sets of forecasts are optimized for both directives. The results reveal that for two years of training data, the hybrid method that involves the most physically-calculated predictors can reduce the MAE by 5.2% and 10.4% compared, respectively, to the optimized physical model chains and the machine learning without any physical considerations. The two most important physical modeling steps are separation and transposition modeling, and the rest of the physical PV simulation can be left to machine learning in hybrid models without a significant increase in the errors. The optimization of the physical model chains is found to be important even in the case of hybrid modeling; therefore, it should become a standard procedure in practical applications. Finally, the hybrid method is only beneficial for at least one year of training data, while in the initial period of the operation of a PV plant, it is advised to stay with optimized physical modeling. The guidelines and recommendations of this paper can help both researchers and practitioners design and optimize their power conversion model to increase the accuracy of the PV power forecasts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
开心绿柳完成签到,获得积分10
2秒前
22222发布了新的文献求助10
2秒前
天天快乐应助我爱学习采纳,获得10
2秒前
年年完成签到 ,获得积分20
3秒前
msl2023完成签到,获得积分10
4秒前
4秒前
郭果儿发布了新的文献求助10
5秒前
6秒前
乐乐应助zq采纳,获得10
8秒前
hbtjytk完成签到,获得积分10
8秒前
10秒前
曾经耳机发布了新的文献求助10
11秒前
11秒前
Janisa发布了新的文献求助10
13秒前
14秒前
14秒前
我爱学习发布了新的文献求助10
14秒前
14秒前
16秒前
小高宽度完成签到,获得积分10
18秒前
mwx发布了新的文献求助10
18秒前
HongJiang发布了新的文献求助10
20秒前
21秒前
zq发布了新的文献求助10
21秒前
23秒前
24秒前
24秒前
26秒前
顾矜应助cfplhys采纳,获得10
26秒前
27秒前
27秒前
cugnju发布了新的文献求助10
28秒前
xx发布了新的文献求助10
32秒前
35秒前
zq完成签到,获得积分10
37秒前
传奇3应助棉花采纳,获得10
37秒前
传奇3应助陈天爱学习采纳,获得10
37秒前
雪满头应助weulo采纳,获得10
38秒前
斯文败类应助xiquezhiwang采纳,获得10
38秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346309
求助须知:如何正确求助?哪些是违规求助? 2973120
关于积分的说明 8657704
捐赠科研通 2653496
什么是DOI,文献DOI怎么找? 1453163
科研通“疑难数据库(出版商)”最低求助积分说明 672782
邀请新用户注册赠送积分活动 662659