Benefits of physical and machine learning hybridization for photovoltaic power forecasting

光伏系统 均方误差 辐照度 计算机科学 一致性(知识库) 太阳辐照度 数值天气预报 功率(物理) 集合(抽象数据类型) 人工智能 机器学习 气象学 工程类 数学 统计 电气工程 物理 量子力学 程序设计语言
作者
Martin János Mayer
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:168: 112772-112772 被引量:73
标识
DOI:10.1016/j.rser.2022.112772
摘要

Irradiance-to-power conversion is an essential step of state-of-the-art photovoltaic (PV) power forecasting, regardless of the source and post-processing of irradiance forecasts. The two distinct approaches for mapping the irradiance forecasts to PV power are physical and data-driven, which can also be hybridized. The contribution of this paper is twofold; first, it proposes a concept and identifies the best implementation of a hybrid physical and machine learning irradiance-to-power conversion method. Second, a head-to-head comparison of the physical, data-driven, and hybrid methods is performed for the operational day-ahead power forecasting of 14 PV plants in Hungary based on numerical weather prediction (NWP). To respect the rule of consistency but still obtain as complete picture as possible, two directives are set, namely minimizing the mean absolute error (MAE) and minimizing the root mean square error (RMSE), and separate sets of forecasts are optimized for both directives. The results reveal that for two years of training data, the hybrid method that involves the most physically-calculated predictors can reduce the MAE by 5.2% and 10.4% compared, respectively, to the optimized physical model chains and the machine learning without any physical considerations. The two most important physical modeling steps are separation and transposition modeling, and the rest of the physical PV simulation can be left to machine learning in hybrid models without a significant increase in the errors. The optimization of the physical model chains is found to be important even in the case of hybrid modeling; therefore, it should become a standard procedure in practical applications. Finally, the hybrid method is only beneficial for at least one year of training data, while in the initial period of the operation of a PV plant, it is advised to stay with optimized physical modeling. The guidelines and recommendations of this paper can help both researchers and practitioners design and optimize their power conversion model to increase the accuracy of the PV power forecasts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻白云发布了新的文献求助10
1秒前
1秒前
沟通亿心发布了新的文献求助10
3秒前
思维隋发布了新的文献求助10
4秒前
在水一方应助阿秋采纳,获得30
5秒前
追寻白云完成签到,获得积分20
8秒前
小馒头完成签到,获得积分10
9秒前
11秒前
MUAN完成签到 ,获得积分10
11秒前
嘻哈发布了新的文献求助10
12秒前
小二郎应助明天见采纳,获得10
14秒前
完美世界应助点墨采纳,获得10
14秒前
婷婷完成签到,获得积分10
15秒前
惟依发布了新的文献求助10
15秒前
15秒前
77发布了新的文献求助10
16秒前
希721完成签到 ,获得积分10
16秒前
syvshc完成签到,获得积分0
17秒前
JeromineJade发布了新的文献求助10
17秒前
susu完成签到,获得积分20
18秒前
危机的依凝完成签到 ,获得积分10
20秒前
Ray完成签到,获得积分10
21秒前
大模型应助Xin采纳,获得10
22秒前
23秒前
千江月完成签到,获得积分10
24秒前
小二郎应助嘻哈采纳,获得10
25秒前
CodeCraft应助科多兽骑士采纳,获得10
25秒前
欣慰外套完成签到 ,获得积分10
26秒前
26秒前
烟花应助77采纳,获得10
29秒前
wen_xxx发布了新的文献求助10
29秒前
染夏发布了新的文献求助10
29秒前
30秒前
陈尘完成签到,获得积分10
30秒前
bkagyin应助zhumeinv采纳,获得10
31秒前
32秒前
33秒前
33秒前
嘻哈完成签到,获得积分10
35秒前
染夏完成签到,获得积分10
37秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993059
求助须知:如何正确求助?哪些是违规求助? 3533948
关于积分的说明 11264188
捐赠科研通 3273624
什么是DOI,文献DOI怎么找? 1806134
邀请新用户注册赠送积分活动 882991
科研通“疑难数据库(出版商)”最低求助积分说明 809629