A Node-Level PathGraph-Based Bearing Remaining Useful Life Prediction Method

图形 计算机科学 节点(物理) 深度学习 数据挖掘 人工智能 模式识别(心理学) 理论计算机科学 工程类 结构工程
作者
Chaoying Yang,Jie Liu,Kaibo Zhou,Xingxing Jiang,Ming-Feng Ge,Yiben Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-10 被引量:4
标识
DOI:10.1109/tim.2022.3190526
摘要

Graph deep learning-based prognostic methods have been successfully applied in bearing remaining useful life (RUL) prediction, as graph represents spatial and temporal dependencies of signals. However, graph data-driven prediction methods using single-sensor data are still insufficiently studied. And the graph construction is not interpretable, where the physical meaning of edges is unclear. To overcome these limitations, a node-level PathGraph-based bearing RUL prediction method is proposed, where a Chebyshev graph convolutional network (ChebCGN) with bi-directional long short-term memory network (BiLSTM) is designed. The node-level PathGraph is constructed to represent the relationships among the time-discrete signals, where edges denote the chronological order and nodes represent signals. After that, graph feature learning ability of ChebGCN-LSTM is enhanced by inputting different chronological PathGraphs related to bearings’ states. In ChebGCN-LSTM, the BiLSTM captures the temporal information, overcoming the limitation of ChebGCN that ignored global temporal dependencies of signals. The constructed PathGraphs are input to ChebGCN-LSTM simultaneously to realize RUL prediction. Experimental results on case studies verify the effectiveness of the proposed bearing RUL prediction method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡奇Mikey完成签到,获得积分10
1秒前
2秒前
5秒前
霸的彤发布了新的文献求助10
5秒前
water应助zzzzzz采纳,获得10
6秒前
yzm完成签到,获得积分10
7秒前
牛牛发布了新的文献求助10
9秒前
Orange应助L外驴尔X采纳,获得10
9秒前
Owen应助无聊的南松采纳,获得30
12秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
深情安青应助时尚的世立采纳,获得10
14秒前
Orange应助MMM采纳,获得10
16秒前
flasher22发布了新的文献求助10
16秒前
小蘑菇应助lin采纳,获得10
18秒前
19秒前
23秒前
sakiecon完成签到,获得积分10
24秒前
yangjiali完成签到 ,获得积分10
24秒前
24秒前
兔子不爱吃胡萝卜完成签到,获得积分10
25秒前
25秒前
蓝枫发布了新的文献求助10
26秒前
28秒前
何hehe完成签到 ,获得积分10
29秒前
29秒前
BJ_whc完成签到,获得积分10
30秒前
月亮邮递员完成签到,获得积分10
31秒前
我啊完成签到 ,获得积分10
31秒前
31秒前
poet泸沽完成签到 ,获得积分10
31秒前
Mayday发布了新的文献求助10
33秒前
月亮不睡我不睡完成签到,获得积分20
36秒前
37秒前
39秒前
40秒前
执笔画流年完成签到,获得积分10
41秒前
天机鲁比发布了新的文献求助10
41秒前
BG完成签到,获得积分10
42秒前
李健应助殿下小王子采纳,获得10
43秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958225
求助须知:如何正确求助?哪些是违规求助? 3504388
关于积分的说明 11118283
捐赠科研通 3235682
什么是DOI,文献DOI怎么找? 1788411
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802565