Pharmacophore-based virtual screening, molecular docking and molecular dynamics simulations study for the identification of LIM kinase-1 inhibitors

虚拟筛选 药效团 对接(动物) 生物信息学 分子动力学 码头 计算生物学 化学 激酶 药物重新定位 药品 立体化学 生物 生物化学 药理学 医学 计算化学 基因 护理部
作者
Ravi Singh,Ankit Vyankatrao Pokle,Powsali Ghosh,Ankit Ganeshpurkar,Rayala Swetha,Sushil Kumar Singh,Ashok Kumar
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:41 (13): 6089-6103 被引量:9
标识
DOI:10.1080/07391102.2022.2101529
摘要

LIM kinases (LIMKs) are a family of protein kinases involved in the regulation of actin dynamics. There are two isoforms of LIMKs i.e., LIMK1 and LIMK2. LIMK1 is expressed abundantly in neuronal tissues. LIMK1 plays an essential role in the degradation of dendritic spines, which are important for our higher brain functions, such as memory and learning. The inhibition of LIMK1 improves the size and density of dendritic spines and acts as a protective effect against Alzheimer's disease. In this study, we have adopted ligand-based drug design and molecular modelling methods to identify virtual hits. The pharmacophoric features of PF-00477736 were used to screen the Zinc15 compounds library. The identified hits were then passed through drug-likeliness and PAINS filters. Further, comprehensive docking and rigorous molecular dynamics simulation study afforded three virtual hits viz., ZINC504485634, ZINC16940431 and ZINC1091071. The hits showed a better docking score than the standard ligand, PF-00477736. The docking score was found to be –8.85, –7.50 and –7.68 kcal/mol. These hits exhibited optimal binding properties with the target in docking study, blood-brain barrier permeability, in silico pharmacokinetics and low predicted toxicity.Communicated by Ramaswamy H. Sarma
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助TreKex采纳,获得10
刚刚
Jun发布了新的文献求助10
刚刚
刚刚
科研通AI6应助Zev采纳,获得10
刚刚
1秒前
拉里佩奇完成签到,获得积分10
1秒前
jinyu发布了新的文献求助10
1秒前
tang发布了新的文献求助30
1秒前
pzh发布了新的文献求助10
1秒前
1秒前
梓铭完成签到,获得积分10
1秒前
2秒前
小余同学发布了新的文献求助10
2秒前
marketing完成签到,获得积分20
2秒前
陆嫣发布了新的文献求助10
3秒前
tianqiang发布了新的文献求助10
3秒前
3秒前
ORAzzz发布了新的文献求助10
4秒前
Eujay发布了新的文献求助10
4秒前
x1完成签到,获得积分10
5秒前
5秒前
5秒前
zzzllove发布了新的文献求助10
5秒前
5秒前
杨元理完成签到 ,获得积分10
6秒前
6秒前
洋子发布了新的文献求助10
7秒前
余铸海完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
marketing发布了新的文献求助10
8秒前
li发布了新的文献求助20
9秒前
寒冷南晴完成签到,获得积分10
9秒前
9秒前
ORAzzz完成签到,获得积分10
10秒前
67完成签到,获得积分10
10秒前
10秒前
10秒前
mini完成签到,获得积分10
11秒前
Danboard发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468557
求助须知:如何正确求助?哪些是违规求助? 4571954
关于积分的说明 14332897
捐赠科研通 4498650
什么是DOI,文献DOI怎么找? 2464664
邀请新用户注册赠送积分活动 1453302
关于科研通互助平台的介绍 1427914