Evolutionary-scale prediction of atomic level protein structure with a language model

语言模型 计算机科学 推论 比例(比率) 蛋白质结构预测 人工智能 蛋白质结构 机器学习 数据挖掘 生物 物理 生物化学 量子力学
作者
Zeming Lin,Halil Akin,Roshan Rao,Brian Hie,Zhongkai Zhu,Wenting Lu,Allan Costa,Maryam Fazel-Zarandi,Tom Sercu,Sal Candido,Alexander Rives
标识
DOI:10.1101/2022.07.20.500902
摘要

Abstract Artificial intelligence has the potential to open insight into the structure of proteins at the scale of evolution. It has only recently been possible to extend protein structure prediction to two hundred million cataloged proteins. Characterizing the structures of the exponentially growing billions of protein sequences revealed by large scale gene sequencing experiments would necessitate a break-through in the speed of folding. Here we show that direct inference of structure from primary sequence using a large language model enables an order of magnitude speed-up in high resolution structure prediction. Leveraging the insight that language models learn evolutionary patterns across millions of sequences, we train models up to 15B parameters, the largest language model of proteins to date. As the language models are scaled they learn information that enables prediction of the three-dimensional structure of a protein at the resolution of individual atoms. This results in prediction that is up to 60x faster than state-of-the-art while maintaining resolution and accuracy. Building on this, we present the ESM Metage-nomic Atlas. This is the first large-scale structural characterization of metagenomic proteins, with more than 617 million structures. The atlas reveals more than 225 million high confidence predictions, including millions whose structures are novel in comparison with experimentally determined structures, giving an unprecedented view into the vast breadth and diversity of the structures of some of the least understood proteins on earth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yefeng完成签到,获得积分10
1秒前
1秒前
2秒前
不安的大白菜真实的钥匙完成签到,获得积分10
3秒前
uziMOF发布了新的文献求助10
3秒前
4秒前
psycho发布了新的文献求助10
4秒前
4秒前
FF12781发布了新的文献求助30
4秒前
5秒前
5秒前
6秒前
6秒前
所所应助张昌昌采纳,获得10
8秒前
飞兰发布了新的文献求助10
8秒前
甜甜圈发布了新的文献求助10
10秒前
叶子发布了新的文献求助10
11秒前
xl完成签到 ,获得积分10
12秒前
12秒前
12秒前
14秒前
ym完成签到,获得积分10
15秒前
15秒前
方小友应助djx123采纳,获得50
16秒前
科研通AI2S应助舒适的凡霜采纳,获得10
16秒前
研友_8YKAdn发布了新的文献求助10
16秒前
传奇3应助DoggyBadiou采纳,获得10
17秒前
一只贝果发布了新的文献求助10
18秒前
18秒前
19秒前
qipupu222完成签到 ,获得积分10
22秒前
23秒前
苏卿应助拼搏的大米采纳,获得10
23秒前
23秒前
大模型应助kaka091采纳,获得10
24秒前
斯文的小鸭子完成签到,获得积分10
24秒前
充电宝应助我的miemie采纳,获得10
24秒前
25秒前
25秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3237301
求助须知:如何正确求助?哪些是违规求助? 2882823
关于积分的说明 8228313
捐赠科研通 2551058
什么是DOI,文献DOI怎么找? 1379575
科研通“疑难数据库(出版商)”最低求助积分说明 648740
邀请新用户注册赠送积分活动 624372