Learning Matter: Materials Design with Machine Learning and Atomistic Simulations

计算机科学 代表(政治) 灵活性(工程) 数学 政治学 政治 统计 法学
作者
Simon Axelrod,Daniel Schwalbe‐Koda,Somesh Mohapatra,James Damewood,Kevin P. Greenman,Rafael Gómez‐Bombarelli
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:3 (3): 343-357 被引量:44
标识
DOI:10.1021/accountsmr.1c00238
摘要

ConspectusDesigning new materials is vital for addressing pressing societal challenges in health, energy, and sustainability. The combination of physicochemical laws and empirical trial and error has long guided material design, but this approach is limited by the cost of experiments and the difficulty of deriving complex guiding principles. The space of hypothetical materials to be considered is incredibly large, and only a small fraction of possible compounds can ever be tested experimentally. The computational techniques of atomistic simulation and machine learning (ML) offer an avenue to rapidly invent new materials and navigate this enormous space. Together, they can be used to infer complex design principles and identify high-quality candidates more rapidly than trial-and-error experimentation. In this Account, we review our group's recent contributions to simulation and ML for materials design. We begin by discussing the numerical representation of materials for use in ML. Representations can be produced through deterministic algorithms, learnable encodings, or physics-based methods and lead to vector, graph, and matrix outputs. We describe how these different approaches offer distinct material- and application-specific advantages. We provide demonstrations from our own work on small-molecule drugs, macromolecules, dyes, electrolytes, and zeolites. In several cases, we show how the appropriate representation led to guiding principles that facilitated experimental materials design. Next, we highlight the development of ML methods for enhancing atomistic simulation. These advances help to improve simulation accuracy and expand the time and length scales that can be explored. They include differentiable atomistic simulations in which ensemble-averaged quantities are differentiated with respect to system parameters, and novel autoregressive methods for enhanced sampling of challenging physical distributions. Other developments include learnable coarse-grained models, which can accelerate molecular dynamics while minimizing the loss of all-atom information, and ML interatomic potentials, which can be trained on maximally informative quantum chemistry data through active learning and adversarial uncertainty attacks. Next, we show how these combined computational advances have enabled high-throughput virtual screening. This has led to the discovery of low-cost organic structure-directing agents for zeolite synthesis, polymer electrolytes, and efficient photoswitches for targeted medicine. We conclude by discussing the limitations of ML and simulation. These include the large data requirements and limited chemical transferability of the former and the speed–accuracy trade-offs of the latter. We predict that advancements in quantum chemistry will further accelerate simulations, while the incorporation of physical principles will improve the reliability of ML.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助lllllll采纳,获得10
5秒前
飘文献完成签到,获得积分10
6秒前
简奥斯汀完成签到 ,获得积分10
6秒前
joey完成签到,获得积分10
7秒前
酆芷蕊完成签到,获得积分10
8秒前
冬虫夏草完成签到,获得积分20
9秒前
12秒前
无聊完成签到,获得积分10
13秒前
优雅小橘子完成签到 ,获得积分10
13秒前
yan完成签到 ,获得积分10
15秒前
bkagyin应助小美最棒采纳,获得10
17秒前
sun发布了新的文献求助10
17秒前
EiketsuChiy完成签到 ,获得积分0
19秒前
Eton完成签到,获得积分10
20秒前
小陈科研发布了新的文献求助10
20秒前
李爱国应助海纳百川采纳,获得30
23秒前
小王同学搞学术完成签到,获得积分10
23秒前
iMoney完成签到 ,获得积分10
25秒前
PPSlu完成签到,获得积分10
26秒前
sjxbjrndkd完成签到 ,获得积分10
26秒前
小陈科研完成签到,获得积分10
29秒前
背后的雪巧完成签到,获得积分20
30秒前
31秒前
rosalieshi应助萱萱采纳,获得30
32秒前
远古遗迹完成签到,获得积分10
32秒前
彩色的德地完成签到,获得积分10
32秒前
37秒前
zhaoshujinvip完成签到,获得积分10
38秒前
38秒前
冷傲半邪完成签到,获得积分10
40秒前
醉翁完成签到,获得积分10
41秒前
大军门诊完成签到,获得积分10
42秒前
yuchen完成签到,获得积分10
42秒前
小美最棒完成签到,获得积分20
42秒前
一颗小行星完成签到 ,获得积分10
43秒前
木光发布了新的文献求助10
43秒前
阿宝完成签到,获得积分0
46秒前
小美最棒发布了新的文献求助10
46秒前
与一完成签到 ,获得积分10
46秒前
mark2021完成签到,获得积分10
48秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集 大事记1949-1987 2000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
草地生态学 880
Threaded Harmony: A Sustainable Approach to Fashion 799
Basic Modern Theory of Linear Complex Analytic 𝑞-Difference Equations 550
中国有机(类)肥料 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3059778
求助须知:如何正确求助?哪些是违规求助? 2715655
关于积分的说明 7445758
捐赠科研通 2361283
什么是DOI,文献DOI怎么找? 1251388
科研通“疑难数据库(出版商)”最低求助积分说明 607751
版权声明 596467