Hour-ahead photovoltaic generation forecasting method based on machine learning and multi objective optimization algorithm

电力系统 计算机科学 理论(学习稳定性) 光伏系统 多目标优化 粒子群优化 模型预测控制 算法 机器学习 人工智能 数学优化 功率(物理) 工程类 数学 控制(管理) 物理 量子力学 电气工程
作者
Jianzhou Wang,Yilin Zhou,Zhiwu Li
出处
期刊:Applied Energy [Elsevier]
卷期号:312: 118725-118725 被引量:58
标识
DOI:10.1016/j.apenergy.2022.118725
摘要

• In the light of the decomposition and ensemble mechanism, the designed system decomposes the original PV power series, reduces the high-frequency noise, so as to reconstructs the sequences. • A novel combination of denoising parameter intelligent optimization, and weights determined strategy. • On the basis of four ANNs, the features of the PV power sequences can be better gained and used. • To further explore the efficiency of the designed system, we have theoretically proved that the hybrid predictive system can obtained the pareto optimal solution. As the penetration rate of solar energy in the grid continues to enhance, solar power photovoltaic generation forecasts have become an indispensable aspect of mechanism mobilization and maintenance of the stability of the power system. In this regard, many researchers have done a lot of study, and put forward some predictive models. However, many individual prediction systems only consider the prediction accuracy rate without further considering the prediction utility and stability. To fill this gap, a comprehensive system is designed in this paper, which is on the basis of automatic optimization of variational mode decomposition mechanism, and the weight of system is determined by multi objective intelligent optimization algorithm. In particular, it can be proved theoretically that the developed predictive system can achieve the pareto optimal solution. And the designed system is shown to be very effective in forecasting the 2021 photovoltaic power data obtained from Belgium. The empirical study reports that the combination of variational mode decomposition strategy based on genetic algorithm and multi objective grasshopper optimization algorithm is found to be the satisfactory strategy to optimize the predictive system compared with other common mechanism. And the results of several numerical studies show that the designed predictive system achieves the superior performance as compared to the control systems, and in multi-step forecasting, the designed system has better stability than the comparison systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
叶素绿完成签到,获得积分10
刚刚
快乐书双发布了新的文献求助10
刚刚
Autin完成签到,获得积分0
刚刚
开心的饼干完成签到,获得积分20
1秒前
LQ完成签到,获得积分10
1秒前
1秒前
关畅澎完成签到,获得积分10
1秒前
2秒前
梅比乌斯博士救救我完成签到 ,获得积分10
2秒前
whuhustwit完成签到,获得积分10
2秒前
wintersss完成签到,获得积分10
2秒前
跳跃的幻露完成签到,获得积分10
3秒前
3秒前
3秒前
深情安青应助18485649437采纳,获得10
3秒前
扁舟灬完成签到,获得积分10
3秒前
白子墨发布了新的文献求助10
3秒前
羽言完成签到,获得积分10
4秒前
4秒前
4秒前
随风发布了新的文献求助10
4秒前
合成研究菜鸟完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助20
4秒前
成就祥发布了新的文献求助10
4秒前
充电宝应助钙帮弟子采纳,获得10
4秒前
zqy完成签到 ,获得积分10
5秒前
abner发布了新的文献求助10
5秒前
luoziwuhui完成签到,获得积分10
6秒前
九九完成签到,获得积分10
6秒前
咚咚糖发布了新的文献求助10
6秒前
93发布了新的文献求助10
6秒前
小蘑菇应助谭访冬采纳,获得10
7秒前
mawenxing完成签到,获得积分10
7秒前
风灵无畏完成签到,获得积分10
7秒前
坦率棉花糖完成签到,获得积分10
7秒前
月月完成签到,获得积分10
8秒前
kkkrystal完成签到,获得积分10
8秒前
8秒前
嘟嘟等文章完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573719
求助须知:如何正确求助?哪些是违规求助? 4659992
关于积分的说明 14727079
捐赠科研通 4599835
什么是DOI,文献DOI怎么找? 2524518
邀请新用户注册赠送积分活动 1494863
关于科研通互助平台的介绍 1464959