Hour-ahead photovoltaic generation forecasting method based on machine learning and multi objective optimization algorithm

电力系统 计算机科学 理论(学习稳定性) 光伏系统 多目标优化 粒子群优化 模型预测控制 算法 机器学习 人工智能 数学优化 功率(物理) 工程类 数学 控制(管理) 物理 量子力学 电气工程
作者
Jianzhou Wang,Yilin Zhou,Zhiwu Li
出处
期刊:Applied Energy [Elsevier BV]
卷期号:312: 118725-118725 被引量:58
标识
DOI:10.1016/j.apenergy.2022.118725
摘要

• In the light of the decomposition and ensemble mechanism, the designed system decomposes the original PV power series, reduces the high-frequency noise, so as to reconstructs the sequences. • A novel combination of denoising parameter intelligent optimization, and weights determined strategy. • On the basis of four ANNs, the features of the PV power sequences can be better gained and used. • To further explore the efficiency of the designed system, we have theoretically proved that the hybrid predictive system can obtained the pareto optimal solution. As the penetration rate of solar energy in the grid continues to enhance, solar power photovoltaic generation forecasts have become an indispensable aspect of mechanism mobilization and maintenance of the stability of the power system. In this regard, many researchers have done a lot of study, and put forward some predictive models. However, many individual prediction systems only consider the prediction accuracy rate without further considering the prediction utility and stability. To fill this gap, a comprehensive system is designed in this paper, which is on the basis of automatic optimization of variational mode decomposition mechanism, and the weight of system is determined by multi objective intelligent optimization algorithm. In particular, it can be proved theoretically that the developed predictive system can achieve the pareto optimal solution. And the designed system is shown to be very effective in forecasting the 2021 photovoltaic power data obtained from Belgium. The empirical study reports that the combination of variational mode decomposition strategy based on genetic algorithm and multi objective grasshopper optimization algorithm is found to be the satisfactory strategy to optimize the predictive system compared with other common mechanism. And the results of several numerical studies show that the designed predictive system achieves the superior performance as compared to the control systems, and in multi-step forecasting, the designed system has better stability than the comparison systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccccc发布了新的文献求助10
1秒前
2秒前
3秒前
taozi完成签到,获得积分10
3秒前
qwerasd完成签到,获得积分10
4秒前
zsl完成签到,获得积分10
4秒前
4秒前
5秒前
不发nothing完成签到,获得积分10
6秒前
等风的人完成签到,获得积分10
7秒前
surilige完成签到,获得积分10
7秒前
8秒前
Dr.lee完成签到,获得积分10
8秒前
张流筝完成签到 ,获得积分10
9秒前
王小橘发布了新的文献求助30
10秒前
10秒前
猫猫文完成签到,获得积分20
11秒前
steiner发布了新的文献求助10
11秒前
香蕉觅云应助苟文先生采纳,获得30
12秒前
银鱼在游完成签到,获得积分10
12秒前
岩松完成签到 ,获得积分10
13秒前
今后应助川川采纳,获得10
13秒前
哈哈哈哈哈完成签到,获得积分10
13秒前
14秒前
大个应助泽灵采纳,获得30
14秒前
16秒前
美羊羊完成签到,获得积分10
18秒前
20秒前
20秒前
下雪啦完成签到,获得积分10
21秒前
21秒前
22秒前
雪梅完成签到 ,获得积分10
22秒前
窦111完成签到,获得积分10
22秒前
浮游应助邱邱采纳,获得10
22秒前
23秒前
苟文先生发布了新的文献求助30
26秒前
圈圈黄完成签到,获得积分10
26秒前
27秒前
unicornmed发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109227
求助须知:如何正确求助?哪些是违规求助? 4317979
关于积分的说明 13453161
捐赠科研通 4147827
什么是DOI,文献DOI怎么找? 2272888
邀请新用户注册赠送积分活动 1275055
关于科研通互助平台的介绍 1213233