已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hour-ahead photovoltaic generation forecasting method based on machine learning and multi objective optimization algorithm

电力系统 计算机科学 理论(学习稳定性) 光伏系统 多目标优化 粒子群优化 模型预测控制 算法 机器学习 人工智能 数学优化 功率(物理) 工程类 数学 控制(管理) 物理 量子力学 电气工程
作者
Jianzhou Wang,Yilin Zhou,Zhiwu Li
出处
期刊:Applied Energy [Elsevier]
卷期号:312: 118725-118725 被引量:58
标识
DOI:10.1016/j.apenergy.2022.118725
摘要

• In the light of the decomposition and ensemble mechanism, the designed system decomposes the original PV power series, reduces the high-frequency noise, so as to reconstructs the sequences. • A novel combination of denoising parameter intelligent optimization, and weights determined strategy. • On the basis of four ANNs, the features of the PV power sequences can be better gained and used. • To further explore the efficiency of the designed system, we have theoretically proved that the hybrid predictive system can obtained the pareto optimal solution. As the penetration rate of solar energy in the grid continues to enhance, solar power photovoltaic generation forecasts have become an indispensable aspect of mechanism mobilization and maintenance of the stability of the power system. In this regard, many researchers have done a lot of study, and put forward some predictive models. However, many individual prediction systems only consider the prediction accuracy rate without further considering the prediction utility and stability. To fill this gap, a comprehensive system is designed in this paper, which is on the basis of automatic optimization of variational mode decomposition mechanism, and the weight of system is determined by multi objective intelligent optimization algorithm. In particular, it can be proved theoretically that the developed predictive system can achieve the pareto optimal solution. And the designed system is shown to be very effective in forecasting the 2021 photovoltaic power data obtained from Belgium. The empirical study reports that the combination of variational mode decomposition strategy based on genetic algorithm and multi objective grasshopper optimization algorithm is found to be the satisfactory strategy to optimize the predictive system compared with other common mechanism. And the results of several numerical studies show that the designed predictive system achieves the superior performance as compared to the control systems, and in multi-step forecasting, the designed system has better stability than the comparison systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Brain完成签到 ,获得积分10
刚刚
1秒前
xuyu发布了新的文献求助10
1秒前
1秒前
英俊芷完成签到 ,获得积分10
2秒前
小人物的坚持完成签到 ,获得积分10
4秒前
Fran07发布了新的文献求助10
4秒前
kk完成签到 ,获得积分10
5秒前
5秒前
01发布了新的文献求助10
5秒前
Perry应助gg采纳,获得10
7秒前
lalalal发布了新的文献求助10
8秒前
熊子康儿子完成签到 ,获得积分10
8秒前
sl完成签到 ,获得积分10
9秒前
9秒前
拼搏的寒凝完成签到 ,获得积分10
9秒前
kk完成签到 ,获得积分10
10秒前
Fran07完成签到,获得积分10
11秒前
ccc发布了新的文献求助10
11秒前
xuyu完成签到,获得积分20
11秒前
黑米粥发布了新的文献求助10
11秒前
illll发布了新的文献求助30
12秒前
年轻宝川完成签到,获得积分10
12秒前
roe完成签到 ,获得积分10
13秒前
短短急个球完成签到,获得积分10
13秒前
可爱初瑶发布了新的文献求助10
13秒前
共享精神应助李长生采纳,获得10
14秒前
搜集达人应助xuyu采纳,获得10
14秒前
任全强发布了新的文献求助10
15秒前
斯文败类应助瀛瀛采纳,获得10
15秒前
16秒前
狗狗耳完成签到 ,获得积分10
16秒前
孤独蘑菇完成签到 ,获得积分10
16秒前
16秒前
lalalal完成签到,获得积分20
17秒前
佳佳完成签到,获得积分10
18秒前
李程阳完成签到 ,获得积分10
19秒前
Echo发布了新的文献求助10
20秒前
22秒前
黑米粥发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458670
求助须知:如何正确求助?哪些是违规求助? 4564690
关于积分的说明 14296542
捐赠科研通 4489739
什么是DOI,文献DOI怎么找? 2459274
邀请新用户注册赠送积分活动 1448998
关于科研通互助平台的介绍 1424502