Hour-ahead photovoltaic generation forecasting method based on machine learning and multi objective optimization algorithm

电力系统 计算机科学 理论(学习稳定性) 光伏系统 多目标优化 粒子群优化 模型预测控制 算法 机器学习 人工智能 数学优化 功率(物理) 工程类 数学 控制(管理) 物理 量子力学 电气工程
作者
Jianzhou Wang,Yilin Zhou,Zhiwu Li
出处
期刊:Applied Energy [Elsevier]
卷期号:312: 118725-118725 被引量:58
标识
DOI:10.1016/j.apenergy.2022.118725
摘要

• In the light of the decomposition and ensemble mechanism, the designed system decomposes the original PV power series, reduces the high-frequency noise, so as to reconstructs the sequences. • A novel combination of denoising parameter intelligent optimization, and weights determined strategy. • On the basis of four ANNs, the features of the PV power sequences can be better gained and used. • To further explore the efficiency of the designed system, we have theoretically proved that the hybrid predictive system can obtained the pareto optimal solution. As the penetration rate of solar energy in the grid continues to enhance, solar power photovoltaic generation forecasts have become an indispensable aspect of mechanism mobilization and maintenance of the stability of the power system. In this regard, many researchers have done a lot of study, and put forward some predictive models. However, many individual prediction systems only consider the prediction accuracy rate without further considering the prediction utility and stability. To fill this gap, a comprehensive system is designed in this paper, which is on the basis of automatic optimization of variational mode decomposition mechanism, and the weight of system is determined by multi objective intelligent optimization algorithm. In particular, it can be proved theoretically that the developed predictive system can achieve the pareto optimal solution. And the designed system is shown to be very effective in forecasting the 2021 photovoltaic power data obtained from Belgium. The empirical study reports that the combination of variational mode decomposition strategy based on genetic algorithm and multi objective grasshopper optimization algorithm is found to be the satisfactory strategy to optimize the predictive system compared with other common mechanism. And the results of several numerical studies show that the designed predictive system achieves the superior performance as compared to the control systems, and in multi-step forecasting, the designed system has better stability than the comparison systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
年年年年发布了新的文献求助10
1秒前
1秒前
离歌发布了新的文献求助30
1秒前
1秒前
YY完成签到,获得积分10
2秒前
结实缘郡发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
小夏完成签到,获得积分10
3秒前
sfq完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
杨佳楠发布了新的文献求助10
4秒前
5秒前
所所应助一一一多采纳,获得10
6秒前
6秒前
JamesPei应助年年年年采纳,获得10
6秒前
逍遥游发布了新的文献求助10
6秒前
bio生物发布了新的文献求助10
7秒前
墨懿发布了新的文献求助10
7秒前
天才少年王旭东完成签到 ,获得积分20
7秒前
发发完成签到 ,获得积分10
8秒前
爆米花应助涵泽采纳,获得10
8秒前
深情安青应助jiqixi采纳,获得10
8秒前
浦老四发布了新的文献求助10
9秒前
9秒前
readhistory发布了新的文献求助10
9秒前
华仔应助三人行采纳,获得10
9秒前
Danboard完成签到,获得积分10
9秒前
Lizhuzhu完成签到,获得积分10
10秒前
火锅发布了新的文献求助10
10秒前
Yuanyuan发布了新的文献求助10
10秒前
年年年年完成签到,获得积分10
11秒前
12秒前
在水一方应助蜜桃奇迹采纳,获得10
13秒前
14秒前
15秒前
neil完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524549
求助须知:如何正确求助?哪些是违规求助? 4615137
关于积分的说明 14546433
捐赠科研通 4553077
什么是DOI,文献DOI怎么找? 2495132
邀请新用户注册赠送积分活动 1475734
关于科研通互助平台的介绍 1447514