Hour-ahead photovoltaic generation forecasting method based on machine learning and multi objective optimization algorithm

电力系统 计算机科学 理论(学习稳定性) 光伏系统 多目标优化 粒子群优化 模型预测控制 算法 机器学习 人工智能 数学优化 功率(物理) 工程类 数学 控制(管理) 物理 量子力学 电气工程
作者
Jianzhou Wang,Yilin Zhou,Zhiwu Li
出处
期刊:Applied Energy [Elsevier]
卷期号:312: 118725-118725 被引量:58
标识
DOI:10.1016/j.apenergy.2022.118725
摘要

• In the light of the decomposition and ensemble mechanism, the designed system decomposes the original PV power series, reduces the high-frequency noise, so as to reconstructs the sequences. • A novel combination of denoising parameter intelligent optimization, and weights determined strategy. • On the basis of four ANNs, the features of the PV power sequences can be better gained and used. • To further explore the efficiency of the designed system, we have theoretically proved that the hybrid predictive system can obtained the pareto optimal solution. As the penetration rate of solar energy in the grid continues to enhance, solar power photovoltaic generation forecasts have become an indispensable aspect of mechanism mobilization and maintenance of the stability of the power system. In this regard, many researchers have done a lot of study, and put forward some predictive models. However, many individual prediction systems only consider the prediction accuracy rate without further considering the prediction utility and stability. To fill this gap, a comprehensive system is designed in this paper, which is on the basis of automatic optimization of variational mode decomposition mechanism, and the weight of system is determined by multi objective intelligent optimization algorithm. In particular, it can be proved theoretically that the developed predictive system can achieve the pareto optimal solution. And the designed system is shown to be very effective in forecasting the 2021 photovoltaic power data obtained from Belgium. The empirical study reports that the combination of variational mode decomposition strategy based on genetic algorithm and multi objective grasshopper optimization algorithm is found to be the satisfactory strategy to optimize the predictive system compared with other common mechanism. And the results of several numerical studies show that the designed predictive system achieves the superior performance as compared to the control systems, and in multi-step forecasting, the designed system has better stability than the comparison systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
yanhuazi发布了新的文献求助10
1秒前
1秒前
1111发布了新的文献求助10
1秒前
岑岑完成签到,获得积分10
1秒前
星辰大海应助常有李采纳,获得10
2秒前
tcx发布了新的文献求助10
2秒前
芝士就是力量完成签到 ,获得积分10
2秒前
wanci应助Aprilapple采纳,获得10
2秒前
2秒前
充电宝应助zheng采纳,获得10
3秒前
JaneChen完成签到 ,获得积分10
3秒前
yyup完成签到,获得积分10
3秒前
迷路迎荷发布了新的文献求助10
3秒前
3秒前
吃饭了吗发布了新的文献求助30
3秒前
mofan发布了新的文献求助10
4秒前
cz发布了新的文献求助10
4秒前
今后应助shshjzh采纳,获得10
4秒前
花佩剑完成签到,获得积分10
4秒前
4秒前
一只西辞发布了新的文献求助10
5秒前
李爱国应助小次之山采纳,获得20
5秒前
走过的风发布了新的文献求助10
5秒前
彭于晏应助潇洒的凡灵采纳,获得10
5秒前
6秒前
雅雅完成签到,获得积分10
6秒前
QQ完成签到,获得积分10
6秒前
jyb完成签到 ,获得积分10
7秒前
7秒前
7秒前
乐观长颈鹿完成签到 ,获得积分10
7秒前
8秒前
着急的耳机关注了科研通微信公众号
8秒前
虫子盐发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
情怀应助杜志洪采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351821
求助须知:如何正确求助?哪些是违规求助? 4484784
关于积分的说明 13960373
捐赠科研通 4384451
什么是DOI,文献DOI怎么找? 2408942
邀请新用户注册赠送积分活动 1401489
关于科研通互助平台的介绍 1375007