Hour-ahead photovoltaic generation forecasting method based on machine learning and multi objective optimization algorithm

电力系统 计算机科学 理论(学习稳定性) 光伏系统 多目标优化 粒子群优化 模型预测控制 算法 机器学习 人工智能 数学优化 功率(物理) 工程类 数学 控制(管理) 物理 量子力学 电气工程
作者
Jianzhou Wang,Yilin Zhou,Zhiwu Li
出处
期刊:Applied Energy [Elsevier]
卷期号:312: 118725-118725 被引量:58
标识
DOI:10.1016/j.apenergy.2022.118725
摘要

• In the light of the decomposition and ensemble mechanism, the designed system decomposes the original PV power series, reduces the high-frequency noise, so as to reconstructs the sequences. • A novel combination of denoising parameter intelligent optimization, and weights determined strategy. • On the basis of four ANNs, the features of the PV power sequences can be better gained and used. • To further explore the efficiency of the designed system, we have theoretically proved that the hybrid predictive system can obtained the pareto optimal solution. As the penetration rate of solar energy in the grid continues to enhance, solar power photovoltaic generation forecasts have become an indispensable aspect of mechanism mobilization and maintenance of the stability of the power system. In this regard, many researchers have done a lot of study, and put forward some predictive models. However, many individual prediction systems only consider the prediction accuracy rate without further considering the prediction utility and stability. To fill this gap, a comprehensive system is designed in this paper, which is on the basis of automatic optimization of variational mode decomposition mechanism, and the weight of system is determined by multi objective intelligent optimization algorithm. In particular, it can be proved theoretically that the developed predictive system can achieve the pareto optimal solution. And the designed system is shown to be very effective in forecasting the 2021 photovoltaic power data obtained from Belgium. The empirical study reports that the combination of variational mode decomposition strategy based on genetic algorithm and multi objective grasshopper optimization algorithm is found to be the satisfactory strategy to optimize the predictive system compared with other common mechanism. And the results of several numerical studies show that the designed predictive system achieves the superior performance as compared to the control systems, and in multi-step forecasting, the designed system has better stability than the comparison systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lee完成签到,获得积分10
1秒前
2秒前
慕青应助灰灰采纳,获得10
2秒前
文文完成签到,获得积分10
3秒前
5秒前
迷路又夏发布了新的文献求助10
6秒前
6秒前
小二郎应助xxm采纳,获得10
7秒前
呐呐呐发布了新的文献求助10
8秒前
在水一方应助hhh采纳,获得10
11秒前
英俊的铭应助平淡凡柔采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
小云发布了新的文献求助10
12秒前
开心安莲完成签到,获得积分10
13秒前
情怀应助落雨冥采纳,获得10
15秒前
打打应助kroll采纳,获得10
15秒前
15秒前
21秒前
每㐬山风发布了新的文献求助30
22秒前
qaq完成签到,获得积分10
22秒前
猪猪侠完成签到,获得积分10
24秒前
假寐发布了新的文献求助10
24秒前
科目三应助KH采纳,获得10
24秒前
麦克发布了新的文献求助20
24秒前
yxyer发布了新的文献求助10
26秒前
yeyexueqiu发布了新的文献求助10
28秒前
28秒前
dududuudu完成签到,获得积分10
29秒前
30秒前
ZZZaa发布了新的文献求助30
33秒前
量子星尘发布了新的文献求助30
33秒前
wanci应助完美花生采纳,获得10
33秒前
30发布了新的文献求助10
33秒前
浮游应助Ellis采纳,获得20
35秒前
Jing发布了新的文献求助10
36秒前
39秒前
11111发布了新的文献求助10
39秒前
Hello应助小鱼干采纳,获得10
39秒前
LONG完成签到 ,获得积分10
40秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425117
求助须知:如何正确求助?哪些是违规求助? 4539252
关于积分的说明 14166344
捐赠科研通 4456403
什么是DOI,文献DOI怎么找? 2444186
邀请新用户注册赠送积分活动 1435189
关于科研通互助平台的介绍 1412553