亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hour-ahead photovoltaic generation forecasting method based on machine learning and multi objective optimization algorithm

电力系统 计算机科学 理论(学习稳定性) 光伏系统 多目标优化 粒子群优化 模型预测控制 算法 机器学习 人工智能 数学优化 功率(物理) 工程类 数学 控制(管理) 物理 量子力学 电气工程
作者
Jianzhou Wang,Yilin Zhou,Zhiwu Li
出处
期刊:Applied Energy [Elsevier BV]
卷期号:312: 118725-118725 被引量:58
标识
DOI:10.1016/j.apenergy.2022.118725
摘要

• In the light of the decomposition and ensemble mechanism, the designed system decomposes the original PV power series, reduces the high-frequency noise, so as to reconstructs the sequences. • A novel combination of denoising parameter intelligent optimization, and weights determined strategy. • On the basis of four ANNs, the features of the PV power sequences can be better gained and used. • To further explore the efficiency of the designed system, we have theoretically proved that the hybrid predictive system can obtained the pareto optimal solution. As the penetration rate of solar energy in the grid continues to enhance, solar power photovoltaic generation forecasts have become an indispensable aspect of mechanism mobilization and maintenance of the stability of the power system. In this regard, many researchers have done a lot of study, and put forward some predictive models. However, many individual prediction systems only consider the prediction accuracy rate without further considering the prediction utility and stability. To fill this gap, a comprehensive system is designed in this paper, which is on the basis of automatic optimization of variational mode decomposition mechanism, and the weight of system is determined by multi objective intelligent optimization algorithm. In particular, it can be proved theoretically that the developed predictive system can achieve the pareto optimal solution. And the designed system is shown to be very effective in forecasting the 2021 photovoltaic power data obtained from Belgium. The empirical study reports that the combination of variational mode decomposition strategy based on genetic algorithm and multi objective grasshopper optimization algorithm is found to be the satisfactory strategy to optimize the predictive system compared with other common mechanism. And the results of several numerical studies show that the designed predictive system achieves the superior performance as compared to the control systems, and in multi-step forecasting, the designed system has better stability than the comparison systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xun完成签到,获得积分10
6秒前
20秒前
wangyf完成签到,获得积分10
21秒前
qq发布了新的文献求助10
24秒前
28秒前
42秒前
48秒前
星沐易发布了新的文献求助10
49秒前
xianianrui发布了新的文献求助10
54秒前
55秒前
千枼发布了新的文献求助10
1分钟前
1分钟前
xianianrui发布了新的文献求助10
1分钟前
心随以动完成签到 ,获得积分10
1分钟前
修辛完成签到 ,获得积分10
1分钟前
千枼完成签到,获得积分10
1分钟前
JamesPei应助sy采纳,获得10
1分钟前
1分钟前
superming发布了新的文献求助10
2分钟前
2分钟前
2分钟前
能干宛秋完成签到 ,获得积分10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
sy发布了新的文献求助10
2分钟前
Allright发布了新的文献求助10
2分钟前
共享精神应助Allright采纳,获得10
2分钟前
2分钟前
ccm应助星沐易采纳,获得10
2分钟前
cy0824完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
yang完成签到,获得积分10
3分钟前
3分钟前
星沐易发布了新的文献求助10
3分钟前
xianianrui发布了新的文献求助10
3分钟前
火星完成签到 ,获得积分10
4分钟前
星沐易完成签到,获得积分10
4分钟前
冷静新烟完成签到,获得积分10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
台灣螢火蟲 500
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4540919
求助须知:如何正确求助?哪些是违规求助? 3974664
关于积分的说明 12310757
捐赠科研通 3641887
什么是DOI,文献DOI怎么找? 2005489
邀请新用户注册赠送积分活动 1040881
科研通“疑难数据库(出版商)”最低求助积分说明 930110