Hour-ahead photovoltaic generation forecasting method based on machine learning and multi objective optimization algorithm

电力系统 计算机科学 理论(学习稳定性) 光伏系统 多目标优化 粒子群优化 模型预测控制 算法 机器学习 人工智能 数学优化 功率(物理) 工程类 数学 控制(管理) 物理 量子力学 电气工程
作者
Jianzhou Wang,Yilin Zhou,Zhiwu Li
出处
期刊:Applied Energy [Elsevier BV]
卷期号:312: 118725-118725 被引量:58
标识
DOI:10.1016/j.apenergy.2022.118725
摘要

• In the light of the decomposition and ensemble mechanism, the designed system decomposes the original PV power series, reduces the high-frequency noise, so as to reconstructs the sequences. • A novel combination of denoising parameter intelligent optimization, and weights determined strategy. • On the basis of four ANNs, the features of the PV power sequences can be better gained and used. • To further explore the efficiency of the designed system, we have theoretically proved that the hybrid predictive system can obtained the pareto optimal solution. As the penetration rate of solar energy in the grid continues to enhance, solar power photovoltaic generation forecasts have become an indispensable aspect of mechanism mobilization and maintenance of the stability of the power system. In this regard, many researchers have done a lot of study, and put forward some predictive models. However, many individual prediction systems only consider the prediction accuracy rate without further considering the prediction utility and stability. To fill this gap, a comprehensive system is designed in this paper, which is on the basis of automatic optimization of variational mode decomposition mechanism, and the weight of system is determined by multi objective intelligent optimization algorithm. In particular, it can be proved theoretically that the developed predictive system can achieve the pareto optimal solution. And the designed system is shown to be very effective in forecasting the 2021 photovoltaic power data obtained from Belgium. The empirical study reports that the combination of variational mode decomposition strategy based on genetic algorithm and multi objective grasshopper optimization algorithm is found to be the satisfactory strategy to optimize the predictive system compared with other common mechanism. And the results of several numerical studies show that the designed predictive system achieves the superior performance as compared to the control systems, and in multi-step forecasting, the designed system has better stability than the comparison systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
5秒前
彭日晓完成签到,获得积分20
6秒前
7秒前
zhanyuji发布了新的文献求助10
10秒前
10秒前
YYYY完成签到,获得积分10
11秒前
彭日晓发布了新的文献求助30
11秒前
12秒前
12秒前
星辰大海应助拂晓晓采纳,获得10
13秒前
池棠小荷发布了新的文献求助10
14秒前
自信的高山完成签到,获得积分10
15秒前
1090发布了新的文献求助10
17秒前
你是谁完成签到,获得积分10
18秒前
哈哈哈完成签到 ,获得积分10
20秒前
22秒前
25秒前
明钟达发布了新的文献求助10
25秒前
Suttier发布了新的文献求助10
27秒前
青与绿给青与绿的求助进行了留言
27秒前
yx_cheng应助开放惜寒采纳,获得10
27秒前
江月年发布了新的文献求助10
28秒前
wjw完成签到,获得积分10
29秒前
缥缈的绿兰完成签到,获得积分10
30秒前
demo完成签到,获得积分10
33秒前
38秒前
40秒前
41秒前
43秒前
44秒前
自信向梦完成签到,获得积分10
46秒前
47秒前
47秒前
年糕菌发布了新的文献求助10
49秒前
49秒前
Newt应助卜靖荷采纳,获得200
49秒前
郭宏亮发布了新的文献求助10
50秒前
51秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967080
求助须知:如何正确求助?哪些是违规求助? 3512449
关于积分的说明 11163289
捐赠科研通 3247337
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804450