Development of human-derived, three-dimensional respiratory epithelial tissue constructs with perfusable microvasculature on a high-throughput microfluidics screening platform

呼吸道 流式细胞术 微流控 呼吸系统 病理 生物 生物医学工程 免疫学 医学 材料科学 纳米技术 解剖 内科学
作者
Olive Jung,Yen-Ting Tung,Esther Sim,Yu-Chi Chen,Emily Lee,Marc Ferrer,Min Jae Song
出处
期刊:Biofabrication [IOP Publishing]
卷期号:14 (2): 025012-025012 被引量:15
标识
DOI:10.1088/1758-5090/ac32a5
摘要

The COVID-19 pandemic has highlighted the need for human respiratory tract-based assay platforms for efficient discovery and development of antivirals and disease-modulating therapeutics. Physiologically relevant tissue models of the lower respiratory tract (LRT), including the respiratory bronchioles and the alveolar sacs, are of high interest because they are the primary site of severe SARS-CoV-2 infection and are most affected during the terminal stage of COVID-19. Current epithelial lung models used to study respiratory viral infections include lung epithelial cells at the air-liquid interface (ALI) with fibroblasts and endothelial cells, but such models do not have a perfusable microvascular network to investigate both viral infectivity and viral infection-induced thrombotic events. Using a high throughput, 64-chip microfluidic plate-based platform, we have developed two novel vascularized, LRT multi-chip models for the alveoli and the small airway. Both models include a perfusable microvascular network consisting of human primary microvascular endothelial cells, fibroblasts and pericytes. The established biofabrication protocols also enable the formation of differentiated lung epithelial layers at the ALI on top of the vascularized tissue bed. We validated the physiologically relevant cellular composition, architecture and perfusion of the vascularized lung tissue models using fluorescence microscopy, flow cytometry, and electrical resistance measurements. These vascularized, perfusable microfluidic lung tissue on high throughput assay platforms will enable the development of respiratory viral infection and disease models for research investigation and drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
清风~徐来完成签到 ,获得积分10
3秒前
共享精神应助舒适以山采纳,获得10
5秒前
小蘑菇应助xx采纳,获得10
8秒前
星禾吾发布了新的文献求助10
8秒前
典雅的觅儿完成签到,获得积分10
9秒前
嗯哼大王发布了新的文献求助10
10秒前
13秒前
丈八二桃发布了新的文献求助10
13秒前
YD完成签到 ,获得积分10
14秒前
669完成签到,获得积分10
14秒前
丰富的热狗完成签到,获得积分10
15秒前
李大了完成签到,获得积分10
16秒前
shunshun51213完成签到,获得积分10
18秒前
orixero应助丈八二桃采纳,获得10
18秒前
zhiyiting发布了新的文献求助10
23秒前
李大了发布了新的文献求助10
24秒前
shunshun51213发布了新的文献求助10
26秒前
快乐排骨汤完成签到 ,获得积分10
27秒前
30秒前
传奇3应助tomalan采纳,获得10
31秒前
huangJP发布了新的文献求助10
33秒前
深情安青应助李大了采纳,获得10
37秒前
好汉完成签到,获得积分10
37秒前
嗯哼大王完成签到,获得积分10
40秒前
万能图书馆应助四叶草采纳,获得10
40秒前
tudou发布了新的文献求助30
41秒前
爆米花应助天之骄子采纳,获得10
42秒前
42秒前
42秒前
43秒前
Polymer72应助林qjr采纳,获得20
43秒前
43秒前
研友_841XxL发布了新的文献求助30
45秒前
小张完成签到,获得积分20
48秒前
Cupid完成签到,获得积分10
50秒前
zhang完成签到 ,获得积分10
52秒前
52秒前
53秒前
四叶草发布了新的文献求助10
57秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3350959
求助须知:如何正确求助?哪些是违规求助? 2976530
关于积分的说明 8675382
捐赠科研通 2657669
什么是DOI,文献DOI怎么找? 1455204
科研通“疑难数据库(出版商)”最低求助积分说明 673739
邀请新用户注册赠送积分活动 664225