Motion estimation by deep learning in 2D echocardiography: synthetic dataset and validation

人工智能 计算机科学 深度学习 稳健性(进化) 分割 模式识别(心理学) 运动估计
作者
Ewan Evain,Yunyun Sun,Khuram Faraz,Damien Garcia,Eric Saloux,Bernhard L Gerber,Mathieu De Craene,Olivier Bernard
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2022.3151606
摘要

Motion estimation in echocardiography plays an important role in the characterization of cardiac function, allowing the computation of myocardial deformation indices. However, there exist limitations in clinical practice, particularly with regard to the accuracy and robustness of measurements extracted from images. We therefore propose a novel deep learning solution for motion estimation in echocardiography. Our network corresponds to a modified version of PWC-Net which achieves high performance on ultrasound sequences. In parallel, we designed a novel simulation pipeline allowing the generation of a large amount of realistic B-mode sequences. These synthetic data, together with strategies during training and inference, were used to improve the performance of our deep learning solution, which achieved an average endpoint error of 0.07± 0.06mmper frame and 1.20±0.67mmbetween ED and ES on our simulated dataset. The performance of our method was further investigated on 30 patients from a publicly available clinical dataset acquired from a GE system. The method showed promise by achieving a mean absolute error of the global longitudinal strain of 2.5 ± 2.1% and a correlation of 0.77 compared to GLS derived from manual segmentation, much better than one of the most efficient methods in the state-of-the-art (namely the FFT-Xcorr block-matching method). We finally evaluated our method on an auxiliary dataset including 30 patients from another center and acquired with a different system. Comparable results were achieved, illustrating the ability of our method to maintain high performance regardless of the echocardiographic data processed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wangxiaoxiao发布了新的文献求助10
1秒前
小波发布了新的文献求助10
1秒前
ZM完成签到 ,获得积分10
1秒前
悟空发布了新的文献求助10
2秒前
CodeCraft应助Minnie22采纳,获得10
3秒前
jj完成签到,获得积分10
3秒前
小紫发布了新的文献求助20
3秒前
搜集达人应助zy采纳,获得10
5秒前
5秒前
5秒前
5秒前
qianmo完成签到 ,获得积分10
5秒前
安guo发布了新的文献求助10
6秒前
牛牛完成签到,获得积分10
6秒前
6秒前
菜鸟发布了新的文献求助10
7秒前
安an完成签到,获得积分10
7秒前
香蕉觅云应助huxiaowen采纳,获得10
8秒前
Olives完成签到,获得积分10
9秒前
小二郎应助迷你的夏云采纳,获得10
10秒前
安an发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
慕青应助长理学术垃圾采纳,获得20
11秒前
12秒前
丹曦完成签到,获得积分10
12秒前
13秒前
13秒前
昊康好完成签到,获得积分10
14秒前
Abdurrahman发布了新的文献求助30
14秒前
朝阳发布了新的文献求助10
14秒前
15秒前
丘比特应助跨进行采纳,获得10
15秒前
15秒前
16秒前
LM发布了新的文献求助10
16秒前
YUEzy完成签到,获得积分10
17秒前
可以的发布了新的文献求助10
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258708
求助须知:如何正确求助?哪些是违规求助? 2900498
关于积分的说明 8310704
捐赠科研通 2569753
什么是DOI,文献DOI怎么找? 1395982
科研通“疑难数据库(出版商)”最低求助积分说明 653340
邀请新用户注册赠送积分活动 631241