Motion estimation by deep learning in 2D echocardiography: synthetic dataset and validation

人工智能 计算机科学 深度学习 稳健性(进化) 分割 模式识别(心理学) 运动估计
作者
Ewan Evain,Yunyun Sun,Khuram Faraz,Damien Garcia,Eric Saloux,Bernhard L Gerber,Mathieu De Craene,Olivier Bernard
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2022.3151606
摘要

Motion estimation in echocardiography plays an important role in the characterization of cardiac function, allowing the computation of myocardial deformation indices. However, there exist limitations in clinical practice, particularly with regard to the accuracy and robustness of measurements extracted from images. We therefore propose a novel deep learning solution for motion estimation in echocardiography. Our network corresponds to a modified version of PWC-Net which achieves high performance on ultrasound sequences. In parallel, we designed a novel simulation pipeline allowing the generation of a large amount of realistic B-mode sequences. These synthetic data, together with strategies during training and inference, were used to improve the performance of our deep learning solution, which achieved an average endpoint error of 0.07± 0.06mmper frame and 1.20±0.67mmbetween ED and ES on our simulated dataset. The performance of our method was further investigated on 30 patients from a publicly available clinical dataset acquired from a GE system. The method showed promise by achieving a mean absolute error of the global longitudinal strain of 2.5 ± 2.1% and a correlation of 0.77 compared to GLS derived from manual segmentation, much better than one of the most efficient methods in the state-of-the-art (namely the FFT-Xcorr block-matching method). We finally evaluated our method on an auxiliary dataset including 30 patients from another center and acquired with a different system. Comparable results were achieved, illustrating the ability of our method to maintain high performance regardless of the echocardiographic data processed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
炙热晓露发布了新的文献求助10
刚刚
领导范儿应助彩色的浩天采纳,获得10
刚刚
1秒前
陈泽冉完成签到,获得积分10
1秒前
1秒前
西湖发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
搜集达人应助漂亮的无心采纳,获得10
4秒前
fxs发布了新的文献求助10
5秒前
lsh完成签到,获得积分10
5秒前
chhzz完成签到 ,获得积分10
6秒前
炙热晓露完成签到,获得积分10
6秒前
kawing发布了新的文献求助50
7秒前
7秒前
搜大有发布了新的文献求助10
7秒前
王同学完成签到,获得积分10
7秒前
7秒前
777发布了新的文献求助10
9秒前
123发布了新的文献求助10
9秒前
9秒前
停停走走发布了新的文献求助10
9秒前
9秒前
11秒前
11秒前
小马甲应助英勇白卉采纳,获得10
11秒前
ananludada发布了新的文献求助10
11秒前
11秒前
12秒前
影子发布了新的文献求助10
12秒前
dq1992发布了新的文献求助10
12秒前
summer夏完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
JingjingYao完成签到,获得积分10
13秒前
虚幻的枫叶完成签到 ,获得积分10
14秒前
zyzraylene发布了新的文献求助50
14秒前
852应助好事朵朵开采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4969390
求助须知:如何正确求助?哪些是违规求助? 4226439
关于积分的说明 13162922
捐赠科研通 4013920
什么是DOI,文献DOI怎么找? 2196363
邀请新用户注册赠送积分活动 1209607
关于科研通互助平台的介绍 1123732