Motion estimation by deep learning in 2D echocardiography: synthetic dataset and validation

人工智能 计算机科学 深度学习 稳健性(进化) 分割 模式识别(心理学) 运动估计
作者
Ewan Evain,Yunyun Sun,Khuram Faraz,Damien Garcia,Eric Saloux,Bernhard L Gerber,Mathieu De Craene,Olivier Bernard
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2022.3151606
摘要

Motion estimation in echocardiography plays an important role in the characterization of cardiac function, allowing the computation of myocardial deformation indices. However, there exist limitations in clinical practice, particularly with regard to the accuracy and robustness of measurements extracted from images. We therefore propose a novel deep learning solution for motion estimation in echocardiography. Our network corresponds to a modified version of PWC-Net which achieves high performance on ultrasound sequences. In parallel, we designed a novel simulation pipeline allowing the generation of a large amount of realistic B-mode sequences. These synthetic data, together with strategies during training and inference, were used to improve the performance of our deep learning solution, which achieved an average endpoint error of 0.07± 0.06mmper frame and 1.20±0.67mmbetween ED and ES on our simulated dataset. The performance of our method was further investigated on 30 patients from a publicly available clinical dataset acquired from a GE system. The method showed promise by achieving a mean absolute error of the global longitudinal strain of 2.5 ± 2.1% and a correlation of 0.77 compared to GLS derived from manual segmentation, much better than one of the most efficient methods in the state-of-the-art (namely the FFT-Xcorr block-matching method). We finally evaluated our method on an auxiliary dataset including 30 patients from another center and acquired with a different system. Comparable results were achieved, illustrating the ability of our method to maintain high performance regardless of the echocardiographic data processed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
默默夏烟完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
2秒前
无奈的晴发布了新的文献求助10
2秒前
duohao2023应助幽壑之潜蛟采纳,获得10
2秒前
GET发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
4秒前
q792309106发布了新的文献求助10
4秒前
4秒前
Liufgui应助tyj采纳,获得20
4秒前
5秒前
Dicy发布了新的文献求助10
5秒前
6秒前
高贵白凝发布了新的文献求助10
6秒前
charles发布了新的文献求助20
7秒前
DBY发布了新的文献求助10
8秒前
考虑考虑发布了新的文献求助10
9秒前
GET完成签到,获得积分10
10秒前
QQQ完成签到,获得积分10
10秒前
11秒前
11秒前
司空豁发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
15秒前
嘘嘘发布了新的文献求助10
16秒前
17秒前
科研通AI5应助幽壑之潜蛟采纳,获得10
17秒前
ZZ发布了新的文献求助10
17秒前
18秒前
高贵白凝完成签到,获得积分10
19秒前
十八完成签到,获得积分10
19秒前
李健的小迷弟应助lee1984612采纳,获得10
20秒前
旅行者发布了新的文献求助10
21秒前
长安发布了新的文献求助10
22秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979584
求助须知:如何正确求助?哪些是违规求助? 3523532
关于积分的说明 11217894
捐赠科研通 3261031
什么是DOI,文献DOI怎么找? 1800369
邀请新用户注册赠送积分活动 879064
科研通“疑难数据库(出版商)”最低求助积分说明 807152