Accelerated degradation of sulfadiazine by nitrogen-doped magnetic biochar-activated persulfate: Role of oxygen vacancy

生物炭 化学 催化作用 过硫酸盐 降级(电信) 磺胺嘧啶 化学工程 有机化学 热解 计算机科学 电信 工程类 生物化学 抗生素
作者
Jie Zhong,Yong Feng,Bin Yang,Qian Xiong,Guang‐Guo Ying
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:289: 120735-120735 被引量:60
标识
DOI:10.1016/j.seppur.2022.120735
摘要

Modification using biochar as a carrier is a promising method to improve the activation of peroxymonosulfate (PMS) by magnetic nanoparticles. In this study, we provided an effective strategy to control the generation of oxygen vacancy to prepare N-doped magnetic biochar (NMB) by optimizing the heat treatment process of gas foaming. The NMB exhibited superior catalytic performance and stable recycling use in the activation of PMS to degrade sulfadiazine (SDZ). Through multiple characterization techniques and density functional theory (DFT) calculations, the mechanism of the reaction process about oxygen vacancy was explored for the first time in magnetic biochar. In addition, the degradation kinetics, recycling experiment, and removal of total organic carbon were carried out to evaluate the degradation performance of NMB/PMS system. After 15 min of reaction, the removal rate of SDZ reached 95.2%. After the fifth cycle of use, the removal rate of SDZ remained at 79.6%. In addition to SDZ, the NMB/PMS system could also efficiently remove ofloxacin, reactive brilliant red, and bisphenol A, suggesting excellent degradation reactivity for different types of pollutants. The oxygen vacancy was found to play an important role in the catalytic process probably through changing the electronic structure of the NMB catalyst and thereby activating the charge transfer to participate in the degradation. The results from this study might deepen the understanding of the activation mechanism driven by magnetic biochar and provide insights into the development of low-cost wastewater treatment technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
isabelwy完成签到,获得积分10
刚刚
刚刚
刚刚
Faith完成签到,获得积分10
1秒前
可爱的弘文完成签到,获得积分10
1秒前
1秒前
1秒前
乔木木完成签到,获得积分10
1秒前
1秒前
小飞鼠发布了新的文献求助10
1秒前
唐飒发布了新的文献求助10
1秒前
痴痴的噜完成签到,获得积分10
2秒前
2秒前
rouxi发布了新的文献求助10
2秒前
能干冰露完成签到,获得积分10
2秒前
2秒前
猴哥完成签到,获得积分10
2秒前
3秒前
无私鹏涛完成签到,获得积分10
3秒前
Criminology34应助Tian采纳,获得10
3秒前
4秒前
唐文硕发布了新的文献求助10
4秒前
4秒前
fhz发布了新的文献求助20
4秒前
4秒前
isabelwy发布了新的文献求助10
4秒前
悦耳青曼发布了新的文献求助10
5秒前
小葛发布了新的文献求助10
5秒前
lameliu完成签到,获得积分10
5秒前
善学以致用应助Msong采纳,获得10
5秒前
19251758320完成签到 ,获得积分10
5秒前
开放夜南发布了新的文献求助10
5秒前
唐飒完成签到,获得积分10
6秒前
隐形曼青应助awoe采纳,获得10
6秒前
烂漫纲发布了新的文献求助10
6秒前
6秒前
6秒前
somous发布了新的文献求助10
6秒前
CipherSage应助王筠曦采纳,获得30
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836