Accelerated degradation of sulfadiazine by nitrogen-doped magnetic biochar-activated persulfate: Role of oxygen vacancy

生物炭 化学 催化作用 过硫酸盐 降级(电信) 磺胺嘧啶 化学工程 有机化学 热解 计算机科学 电信 工程类 生物化学 抗生素
作者
Jie Zhong,Yong Feng,Bin Yang,Qian Xiong,Guang‐Guo Ying
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:289: 120735-120735 被引量:60
标识
DOI:10.1016/j.seppur.2022.120735
摘要

Modification using biochar as a carrier is a promising method to improve the activation of peroxymonosulfate (PMS) by magnetic nanoparticles. In this study, we provided an effective strategy to control the generation of oxygen vacancy to prepare N-doped magnetic biochar (NMB) by optimizing the heat treatment process of gas foaming. The NMB exhibited superior catalytic performance and stable recycling use in the activation of PMS to degrade sulfadiazine (SDZ). Through multiple characterization techniques and density functional theory (DFT) calculations, the mechanism of the reaction process about oxygen vacancy was explored for the first time in magnetic biochar. In addition, the degradation kinetics, recycling experiment, and removal of total organic carbon were carried out to evaluate the degradation performance of NMB/PMS system. After 15 min of reaction, the removal rate of SDZ reached 95.2%. After the fifth cycle of use, the removal rate of SDZ remained at 79.6%. In addition to SDZ, the NMB/PMS system could also efficiently remove ofloxacin, reactive brilliant red, and bisphenol A, suggesting excellent degradation reactivity for different types of pollutants. The oxygen vacancy was found to play an important role in the catalytic process probably through changing the electronic structure of the NMB catalyst and thereby activating the charge transfer to participate in the degradation. The results from this study might deepen the understanding of the activation mechanism driven by magnetic biochar and provide insights into the development of low-cost wastewater treatment technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助柒吾采纳,获得10
刚刚
1秒前
xxtdger完成签到 ,获得积分10
1秒前
1秒前
张张洼发布了新的文献求助10
1秒前
1秒前
蓝天发布了新的文献求助10
1秒前
2秒前
张三毛发布了新的文献求助10
2秒前
zeham发布了新的文献求助10
3秒前
王//////发布了新的文献求助10
3秒前
4秒前
简单如天发布了新的文献求助10
4秒前
HJJHJH发布了新的文献求助10
4秒前
tsn发布了新的文献求助10
4秒前
科研通AI6应助asdfzxcv采纳,获得10
4秒前
Jasper应助憨憨采纳,获得10
5秒前
专注的问寒应助Myl采纳,获得20
5秒前
万能图书馆应助李梦瑶采纳,获得10
5秒前
aaaaa发布了新的文献求助10
6秒前
6秒前
6秒前
思源应助浮生采纳,获得10
6秒前
7秒前
7秒前
林深发布了新的文献求助10
7秒前
spc68应助HJJHJH采纳,获得10
7秒前
小蘑菇应助HJJHJH采纳,获得10
7秒前
zouxiang完成签到,获得积分10
8秒前
8秒前
自由人发布了新的文献求助10
8秒前
调皮的炳发布了新的文献求助10
8秒前
9秒前
ctttt发布了新的文献求助10
10秒前
10秒前
qwe123发布了新的文献求助20
11秒前
11秒前
FJLSDNMV完成签到,获得积分10
11秒前
在水一方应助霸气的金鱼采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648015
求助须知:如何正确求助?哪些是违规求助? 4774710
关于积分的说明 15042383
捐赠科研通 4807069
什么是DOI,文献DOI怎么找? 2570494
邀请新用户注册赠送积分活动 1527283
关于科研通互助平台的介绍 1486389