Supervised outlier detection for classification and regression

离群值 计算机科学 异常检测 人工智能 超参数 机器学习 探测器 一级分类 监督学习 模式识别(心理学) 估计员 管道(软件) 二元分类 集合(抽象数据类型) 数据挖掘 分类器(UML) 支持向量机 数学 人工神经网络 统计 电信 程序设计语言
作者
Ángela Fernández,Juan Bella,José R. Dorronsoro
出处
期刊:Neurocomputing [Elsevier]
卷期号:486: 77-92 被引量:24
标识
DOI:10.1016/j.neucom.2022.02.047
摘要

Outlier detection, i.e., the task of detecting points that are markedly different from the data sample, is an important challenge in machine learning. When a model is built, these special points can skew the model training and result in less accurate predictions. Due to this fact, it is important to identify and remove them before building any supervised model and this is often the first step when dealing with a machine learning problem. Nowadays, there exists a very large number of outlier detector algorithms that provide good results, but their main drawbacks are their unsupervised nature together with the hyperparameters that must be properly set for obtaining good performance. In this work, a new supervised outlier estimator is proposed. This is done by pipelining an outlier detector with a following a supervised model, in such a way that the targets of the later supervise how all the hyperparameters involved in the outlier detector are optimally selected. This pipeline-based approach makes it very easy to combine different outlier detectors with different classifiers and regressors. In the experiments done, nine relevant outlier detectors have been combined with three regressors over eight regression problems as well as with two classifiers over another eight binary and multi-class classification problems. The usefulness of the proposal as an objective and automatic way to optimally determine detector hyperparameters has been proven and the effectiveness of the nine outlier detectors has also been analyzed and compared.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
封宇完成签到,获得积分10
1秒前
1秒前
轩辕寄风完成签到,获得积分10
1秒前
1b发布了新的文献求助10
2秒前
忘的澜完成签到,获得积分10
2秒前
藤椒辣鱼应助李米采纳,获得10
2秒前
2秒前
lyf完成签到,获得积分10
2秒前
vampirell完成签到,获得积分0
3秒前
3秒前
123完成签到,获得积分10
4秒前
子车茗应助槛外土馒头采纳,获得30
4秒前
情怀应助斯文谷秋采纳,获得10
4秒前
科研牛发布了新的文献求助30
5秒前
细心的傥发布了新的文献求助10
5秒前
美满夕阳完成签到,获得积分10
5秒前
6秒前
高兴的店员完成签到,获得积分10
6秒前
汉堡包应助暴走采纳,获得10
7秒前
开放易槐完成签到,获得积分10
8秒前
Amelia发布了新的文献求助10
8秒前
七田皿发布了新的文献求助10
8秒前
专注大门完成签到,获得积分10
8秒前
深情安青应助sunny采纳,获得10
9秒前
mm完成签到 ,获得积分10
9秒前
tongtongtong发布了新的文献求助10
9秒前
frank完成签到,获得积分10
9秒前
Yvan完成签到,获得积分10
10秒前
高兴采枫完成签到,获得积分10
10秒前
cgl155410完成签到,获得积分10
11秒前
圆圈儿完成签到,获得积分10
12秒前
勤奋的花前茶完成签到,获得积分10
12秒前
牛牛123完成签到 ,获得积分10
13秒前
科研Queen完成签到,获得积分10
13秒前
扶我起来写论文完成签到 ,获得积分10
14秒前
15秒前
聪慧的石头完成签到,获得积分10
15秒前
Amekaji发布了新的文献求助20
16秒前
lcr发布了新的文献求助10
16秒前
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455848
求助须知:如何正确求助?哪些是违规求助? 3051068
关于积分的说明 9024345
捐赠科研通 2739839
什么是DOI,文献DOI怎么找? 1502947
科研通“疑难数据库(出版商)”最低求助积分说明 694666
邀请新用户注册赠送积分活动 693476