Multimodal Hyperspectral Unmixing: Insights From Attention Networks

高光谱成像 计算机科学 激光雷达 判别式 自编码 人工智能 模式识别(心理学) 特征学习 测距 代表(政治) 特征(语言学) 深度学习 遥感 计算机视觉 地理 政治 哲学 电信 语言学 法学 政治学
作者
Zhu Han,Danfeng Hong,Lianru Gao,Jing Yao,Bing Zhang,Jocelyn Chanussot
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:65
标识
DOI:10.1109/tgrs.2022.3155794
摘要

Deep learning (DL) has aroused wide attention in hyperspectral unmixing (HU) owing to its powerful feature representation ability. As a representative of unsupervised DL approaches, autoencoder (AE) has been proven to be effective to better capture nonlinear components of hyperspectral images than the traditional model-driven linearized methods. However, only using hyperspectral images for unmixing fails to distinguish objects in complex scene, especially for different endmembers with similar materials. To overcome this limitation, we propose a novel multimodal unmixing network for hyperspectral images, called MUNet, by considering the height differences of light detection and ranging (LiDAR) data in a squeeze-and-excitation (SE)-driven attention fashion to guide the unmixing process, yielding performance improvement. MUNet is capable of fusing multimodal information and using the attention map derived by LiDAR to aid network that focuses on more discriminative and meaningful spatial information regarding scenes. Moreover, attribute profile (AP) is adopted to extract the geometrical structures of different objects to better model the spatial information of LiDAR. Experimental results on synthetic and real datasets demonstrate the effectiveness and superiority of the proposed method compared with several state-of-the-art unmixing algorithms. The codes will be available at https://github.com/hanzhu97702/IEEE_TGRS_MUNet, contributing to the remote sensing community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
核桃应助ganchao1776采纳,获得10
1秒前
橘色森林发布了新的文献求助10
1秒前
LXH发布了新的文献求助30
1秒前
MOMO完成签到,获得积分10
1秒前
yangxt-iga发布了新的文献求助10
1秒前
AHR发布了新的文献求助10
2秒前
CodeCraft应助Aspirin采纳,获得10
3秒前
3秒前
3秒前
顾矜应助阳光的梦寒采纳,获得10
3秒前
wanci应助dake采纳,获得10
3秒前
mmb关闭了mmb文献求助
3秒前
3秒前
LY发布了新的文献求助10
3秒前
英俊的铭应助南提采纳,获得10
4秒前
Akim应助chang采纳,获得20
4秒前
4秒前
十一完成签到,获得积分10
5秒前
研友_LwbYv8发布了新的文献求助10
5秒前
顺心靖雁完成签到,获得积分10
7秒前
狄百招发布了新的文献求助10
7秒前
8秒前
yangxt-iga完成签到,获得积分20
8秒前
8秒前
8秒前
wj发布了新的文献求助10
9秒前
天博发布了新的文献求助10
9秒前
英俊的铭应助笑场采纳,获得10
9秒前
慕青应助柯善鹏采纳,获得10
10秒前
10秒前
可靠橘子完成签到,获得积分10
10秒前
11秒前
搜集达人应助ll采纳,获得10
11秒前
LY完成签到,获得积分10
11秒前
delia发布了新的文献求助10
12秒前
领导范儿应助myp采纳,获得10
12秒前
cocu117发布了新的文献求助10
12秒前
12秒前
西门追命发布了新的文献求助40
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951400
求助须知:如何正确求助?哪些是违规求助? 3496764
关于积分的说明 11084465
捐赠科研通 3227180
什么是DOI,文献DOI怎么找? 1784320
邀请新用户注册赠送积分活动 868350
科研通“疑难数据库(出版商)”最低求助积分说明 801110