已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multimodal Hyperspectral Unmixing: Insights From Attention Networks

高光谱成像 计算机科学 激光雷达 判别式 自编码 人工智能 模式识别(心理学) 特征学习 测距 代表(政治) 特征(语言学) 深度学习 遥感 计算机视觉 地理 政治 哲学 电信 语言学 法学 政治学
作者
Zhu Han,Danfeng Hong,Lianru Gao,Jing Yao,Bing Zhang,Jocelyn Chanussot
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:76
标识
DOI:10.1109/tgrs.2022.3155794
摘要

Deep learning (DL) has aroused wide attention in hyperspectral unmixing (HU) owing to its powerful feature representation ability. As a representative of unsupervised DL approaches, autoencoder (AE) has been proven to be effective to better capture nonlinear components of hyperspectral images than the traditional model-driven linearized methods. However, only using hyperspectral images for unmixing fails to distinguish objects in complex scene, especially for different endmembers with similar materials. To overcome this limitation, we propose a novel multimodal unmixing network for hyperspectral images, called MUNet, by considering the height differences of light detection and ranging (LiDAR) data in a squeeze-and-excitation (SE)-driven attention fashion to guide the unmixing process, yielding performance improvement. MUNet is capable of fusing multimodal information and using the attention map derived by LiDAR to aid network that focuses on more discriminative and meaningful spatial information regarding scenes. Moreover, attribute profile (AP) is adopted to extract the geometrical structures of different objects to better model the spatial information of LiDAR. Experimental results on synthetic and real datasets demonstrate the effectiveness and superiority of the proposed method compared with several state-of-the-art unmixing algorithms. The codes will be available at https://github.com/hanzhu97702/IEEE_TGRS_MUNet, contributing to the remote sensing community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
坤坤发布了新的文献求助10
1秒前
2秒前
SciGPT应助大胆老三采纳,获得10
2秒前
研友_VZG7GZ应助大橘采纳,获得10
2秒前
2620完成签到,获得积分10
2秒前
2秒前
3秒前
研友_VZG7GZ应助坤坤采纳,获得10
5秒前
7秒前
9秒前
徐豪杰发布了新的文献求助10
9秒前
坤坤完成签到,获得积分10
10秒前
11秒前
斯文败类应助Bubble_C采纳,获得10
12秒前
chen发布了新的文献求助10
12秒前
酷酷菲音完成签到,获得积分10
13秒前
执着易绿完成签到 ,获得积分10
14秒前
坚强的初蓝完成签到,获得积分10
14秒前
科研通AI6应助zzzjh采纳,获得10
14秒前
15秒前
15秒前
恋空完成签到 ,获得积分10
16秒前
chen完成签到,获得积分10
17秒前
粗犷的抽屉完成签到,获得积分10
18秒前
zxy完成签到,获得积分10
19秒前
GEZHE完成签到,获得积分10
23秒前
25秒前
25秒前
星辰大海应助Zyc采纳,获得10
25秒前
26秒前
26秒前
徐丽娜发布了新的文献求助10
27秒前
27秒前
libin完成签到,获得积分20
28秒前
Wz完成签到 ,获得积分10
28秒前
今麦郎发布了新的文献求助200
30秒前
30秒前
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312379
求助须知:如何正确求助?哪些是违规求助? 4456101
关于积分的说明 13865341
捐赠科研通 4344497
什么是DOI,文献DOI怎么找? 2385924
邀请新用户注册赠送积分活动 1380277
关于科研通互助平台的介绍 1348681