亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Agent Deep Reinforcement Learning for Task Offloading in UAV-Assisted Mobile Edge Computing

计算机科学 强化学习 移动边缘计算 马尔可夫决策过程 计算卸载 分布式计算 边缘计算 无线 资源配置 最优化问题 资源管理(计算) GSM演进的增强数据速率 服务器 实时计算 马尔可夫过程 计算机网络 人工智能 算法 电信 数学 统计
作者
Nan Zhao,Zhiyang Ye,Yiyang Pei,Ying‐Chang Liang,Dusit Niyato
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:21 (9): 6949-6960 被引量:209
标识
DOI:10.1109/twc.2022.3153316
摘要

Mobile edge computing can effectively reduce service latency and improve service quality by offloading computation-intensive tasks to the edges of wireless networks. Due to the characteristic of flexible deployment, wide coverage and reliable wireless communication, unmanned aerial vehicles (UAVs) have been employed as assisted edge clouds (ECs) for large-scale sparely-distributed user equipment. Considering the limited computation and energy capacities of UAVs, a collaborative mobile edge computing system with multiple UAVs and multiple ECs is investigated in this paper. The task offloading issue is addressed to minimize the sum of execution delays and energy consumptions by jointly designing the trajectories, computation task allocation, and communication resource management of UAVs. Moreover, to solve the above non-convex optimization problem, a Markov decision process is formulated for the multi-UAV assisted mobile edge computing system. To obtain the joint strategy of trajectory design, task allocation, and power management, a cooperative multi-agent deep reinforcement learning framework is investigated. Considering the high-dimensional continuous action space, the twin delayed deep deterministic policy gradient algorithm is exploited. The evaluation results demonstrate that our multi-UAV multi-EC task offloading method can achieve better performance compared with the other optimization approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
51秒前
xingsixs完成签到,获得积分10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
1分钟前
邓权发布了新的文献求助10
1分钟前
娇气的幼南完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
生动之云发布了新的文献求助10
2分钟前
2分钟前
3分钟前
美好颜发布了新的文献求助10
3分钟前
3分钟前
大模型应助科研通管家采纳,获得10
3分钟前
小二郎应助科研通管家采纳,获得10
3分钟前
Betty发布了新的文献求助10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
慕青应助lty采纳,获得10
4分钟前
5分钟前
5分钟前
lty发布了新的文献求助10
5分钟前
小岩完成签到 ,获得积分10
5分钟前
5分钟前
咕咕发布了新的文献求助10
5分钟前
彩色黑米完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
AKi233完成签到,获得积分10
5分钟前
AKi233发布了新的文献求助10
6分钟前
充电宝应助AKi233采纳,获得10
6分钟前
咕咕完成签到,获得积分10
6分钟前
FengyaoWang完成签到,获得积分10
6分钟前
6分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968504
求助须知:如何正确求助?哪些是违规求助? 3513278
关于积分的说明 11167234
捐赠科研通 3248660
什么是DOI,文献DOI怎么找? 1794386
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804638