亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Agent Deep Reinforcement Learning for Task Offloading in UAV-Assisted Mobile Edge Computing

计算机科学 强化学习 移动边缘计算 马尔可夫决策过程 计算卸载 分布式计算 边缘计算 无线 资源配置 最优化问题 资源管理(计算) GSM演进的增强数据速率 服务器 实时计算 马尔可夫过程 计算机网络 人工智能 算法 电信 数学 统计
作者
Nan Zhao,Zhiyang Ye,Yiyang Pei,Ying‐Chang Liang,Dusit Niyato
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:21 (9): 6949-6960 被引量:209
标识
DOI:10.1109/twc.2022.3153316
摘要

Mobile edge computing can effectively reduce service latency and improve service quality by offloading computation-intensive tasks to the edges of wireless networks. Due to the characteristic of flexible deployment, wide coverage and reliable wireless communication, unmanned aerial vehicles (UAVs) have been employed as assisted edge clouds (ECs) for large-scale sparely-distributed user equipment. Considering the limited computation and energy capacities of UAVs, a collaborative mobile edge computing system with multiple UAVs and multiple ECs is investigated in this paper. The task offloading issue is addressed to minimize the sum of execution delays and energy consumptions by jointly designing the trajectories, computation task allocation, and communication resource management of UAVs. Moreover, to solve the above non-convex optimization problem, a Markov decision process is formulated for the multi-UAV assisted mobile edge computing system. To obtain the joint strategy of trajectory design, task allocation, and power management, a cooperative multi-agent deep reinforcement learning framework is investigated. Considering the high-dimensional continuous action space, the twin delayed deep deterministic policy gradient algorithm is exploited. The evaluation results demonstrate that our multi-UAV multi-EC task offloading method can achieve better performance compared with the other optimization approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助蒙豆儿采纳,获得10
27秒前
35秒前
科研通AI5应助马良采纳,获得10
36秒前
40秒前
47秒前
蒙豆儿发布了新的文献求助10
53秒前
冬去春来完成签到 ,获得积分10
1分钟前
1分钟前
马良发布了新的文献求助10
1分钟前
1分钟前
1分钟前
h0jian09完成签到,获得积分10
1分钟前
2分钟前
2分钟前
88C真是太神奇啦完成签到,获得积分10
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
蒙豆儿发布了新的文献求助10
2分钟前
科研通AI2S应助蒙豆儿采纳,获得10
3分钟前
4分钟前
tabblk完成签到 ,获得积分10
4分钟前
星辰大海应助tabblk采纳,获得10
4分钟前
CRUSADER完成签到,获得积分10
5分钟前
6分钟前
tabblk发布了新的文献求助10
6分钟前
柴子完成签到,获得积分10
6分钟前
Virtual应助科研通管家采纳,获得20
6分钟前
慕青应助科研通管家采纳,获得10
6分钟前
Virtual应助科研通管家采纳,获得20
6分钟前
8分钟前
8分钟前
flyingpig完成签到,获得积分10
9分钟前
leaolf应助flyingpig采纳,获得10
9分钟前
leaolf应助flyingpig采纳,获得10
10分钟前
Virtual应助科研通管家采纳,获得10
10分钟前
Virtual应助科研通管家采纳,获得10
10分钟前
香蕉觅云应助宝贝采纳,获得10
11分钟前
11分钟前
宝贝发布了新的文献求助10
11分钟前
11分钟前
蒙豆儿发布了新的文献求助10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582230
求助须知:如何正确求助?哪些是违规求助? 4000003
关于积分的说明 12381980
捐赠科研通 3674886
什么是DOI,文献DOI怎么找? 2025434
邀请新用户注册赠送积分活动 1059192
科研通“疑难数据库(出版商)”最低求助积分说明 945820