Performance of Flexible Strain Sensors With Different Transition Mechanisms: A Review

灵敏度(控制系统) 电容 电感 导电体 信号(编程语言) 摩擦电效应 电压 材料科学 电气工程 电子工程 声学 计算机科学 工程类 电极 物理 量子力学 复合材料 程序设计语言
作者
Shidong Ma,Jian Tang,Tao Yan,Zhijuan Pan
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (8): 7475-7498 被引量:33
标识
DOI:10.1109/jsen.2022.3156286
摘要

To promote the application of flexible strain sensors in the fields of athletics feedback, health monitoring, human–machine interface, and robotics, the design strategies of various strain sensors were reviewed according to their transition mechanisms from the input stimulus to the output signal. The transition mechanisms were categorized into four major types: resistance, capacitance, voltage (piezoelectric and triboelectric), and inductance/magnetism. The sensing performance of flexible strain sensors was summarized based on this categorization and compared according to the sensing mechanism. The study observed that the performance of resistance-type sensors depends on the sensor shape and structure of the conductive network. These sensors can detect various forms of strains and have a broad sensing range and high sensitivity. However, these require an external power source. Capacitance-type sensors display rapid response and high sensitivity to force variations. Thus, they can accurately detect subtle deformations with low energy consumption. However, these strain sensors also have certain disadvantages such as a marginal strain range and low repeatability. Voltage-type sensors are energy-saving devices that can directly convert mechanical energy into an electrical signal. However, they exhibit low sensitivity and cannot accurately detect subtle strains. Inductance/magnetism-type sensors can detect strains wirelessly. However, the signal-to-noise ratio is low, and the sensing range is narrow. Finally, the application and development prospects of flexible strain sensors were presented by describing their fabrication techniques and transition mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
iuv发布了新的文献求助10
1秒前
1秒前
扶风关注了科研通微信公众号
1秒前
去火星种一颗芋头应助1111采纳,获得30
1秒前
多情捕完成签到,获得积分10
2秒前
2秒前
3秒前
JayRoSe发布了新的文献求助10
3秒前
脑洞疼应助曾梦采纳,获得10
3秒前
lxlcx发布了新的文献求助10
6秒前
ccc完成签到,获得积分10
7秒前
清脆的又蓝完成签到,获得积分10
8秒前
Cc关注了科研通微信公众号
8秒前
Ava应助阿琳采纳,获得10
8秒前
清爽的诗槐完成签到,获得积分10
8秒前
8秒前
9秒前
姝_完成签到,获得积分10
9秒前
hou完成签到 ,获得积分10
10秒前
干净的时光应助浊人采纳,获得10
11秒前
12秒前
12秒前
深情安青应助清脆的又蓝采纳,获得30
13秒前
大胆幼南发布了新的文献求助10
14秒前
布丁完成签到,获得积分10
15秒前
Jasper应助hmx采纳,获得10
17秒前
搜集达人应助tanhaowen采纳,获得10
17秒前
老张完成签到 ,获得积分10
17秒前
ee发布了新的文献求助10
17秒前
aixuexixiao发布了新的文献求助10
18秒前
躺躺发布了新的文献求助10
18秒前
19秒前
19秒前
积极书双发布了新的文献求助10
20秒前
传奇3应助合适面包采纳,获得10
23秒前
魏戎儿完成签到,获得积分10
23秒前
赵雪发布了新的文献求助10
24秒前
24秒前
开放迎天完成签到 ,获得积分10
25秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160242
求助须知:如何正确求助?哪些是违规求助? 2811282
关于积分的说明 7891712
捐赠科研通 2470390
什么是DOI,文献DOI怎么找? 1315472
科研通“疑难数据库(出版商)”最低求助积分说明 630850
版权声明 602038