Enhanced 3D Shape Reconstruction With Knowledge Graph of Category Concept

计算机科学 人工智能 场景图 图形 对象(语法) 概念图 管道(软件) 代表(政治) 知识表示与推理 计算机视觉 理论计算机科学 渲染(计算机图形) 政治 政治学 法学 程序设计语言
作者
Guofei Sun,Yongkang Wong,Mohan Kankanhalli,Xiangdong Li,Weidong Geng
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:18 (3): 1-20
标识
DOI:10.1145/3491224
摘要

Reconstructing three-dimensional (3D) objects from images has attracted increasing attention due to its wide applications in computer vision and robotic tasks. Despite the promising progress of recent deep learning–based approaches, which directly reconstruct the full 3D shape without considering the conceptual knowledge of the object categories, existing models have limited usage and usually create unrealistic shapes. 3D objects have multiple forms of representation, such as 3D volume, conceptual knowledge, and so on. In this work, we show that the conceptual knowledge for a category of objects, which represents objects as prototype volumes and is structured by graph, can enhance the 3D reconstruction pipeline. We propose a novel multimodal framework that explicitly combines graph-based conceptual knowledge with deep neural networks for 3D shape reconstruction from a single RGB image. Our approach represents conceptual knowledge of a specific category as a structure-based knowledge graph. Specifically, conceptual knowledge acts as visual priors and spatial relationships to assist the 3D reconstruction framework to create realistic 3D shapes with enhanced details. Our 3D reconstruction framework takes an image as input. It first predicts the conceptual knowledge of the object in the image, then generates a 3D object based on the input image and the predicted conceptual knowledge. The generated 3D object satisfies the following requirements: (1) it is consistent with the predicted graph in concept, and (2) consistent with the input image in geometry. Extensive experiments on public datasets (i.e., ShapeNet, Pix3D, and Pascal3D+) with 13 object categories show that (1) our method outperforms the state-of-the-art methods, (2) our prototype volume-based conceptual knowledge representation is more effective, and (3) our pipeline-agnostic approach can enhance the reconstruction quality of various 3D shape reconstruction pipelines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三三完成签到,获得积分10
1秒前
越红完成签到,获得积分10
2秒前
keithyoung完成签到,获得积分10
2秒前
Gydl完成签到,获得积分10
2秒前
3秒前
哦耶完成签到,获得积分10
3秒前
4秒前
howky完成签到,获得积分10
4秒前
5秒前
情怀应助重新开始采纳,获得10
5秒前
李爱国应助夜雨潇潇采纳,获得10
6秒前
时尚的开山完成签到,获得积分10
7秒前
打打应助土土力口采纳,获得10
8秒前
要减肥香水完成签到,获得积分10
8秒前
氢氧化钠Li完成签到,获得积分10
8秒前
lvvyy完成签到,获得积分10
9秒前
leo发布了新的文献求助10
11秒前
Ava应助鑫月采纳,获得10
11秒前
何公主完成签到,获得积分10
12秒前
小五发布了新的文献求助20
12秒前
12秒前
顺利毕业完成签到,获得积分10
13秒前
13秒前
香蕉觅云应助殷勤的仇血采纳,获得10
14秒前
wy.he应助Chen采纳,获得40
14秒前
15秒前
17秒前
17秒前
儒雅谷芹完成签到,获得积分10
18秒前
科研通AI6.1应助研友_ndV9Y8采纳,获得10
18秒前
19秒前
夜雨潇潇发布了新的文献求助10
19秒前
19秒前
19秒前
细心青雪完成签到 ,获得积分10
20秒前
Doc.Lee发布了新的文献求助10
21秒前
闪闪蜜粉完成签到 ,获得积分10
21秒前
21秒前
八九发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733856
求助须知:如何正确求助?哪些是违规求助? 5351379
关于积分的说明 15325402
捐赠科研通 4878818
什么是DOI,文献DOI怎么找? 2621454
邀请新用户注册赠送积分活动 1570535
关于科研通互助平台的介绍 1527514